# New Circular External Difference Families and Related Constructions

Struan McCartney (St Andrews)

Joint work with Sophie Huczynska and Chris Jefferson

## AMD Code Diagram



æ

→ < ∃ →</p>

## AMD Code Diagram (with adversary)



э

## AMD Codes

In 2008 Cramer et. al. defined an  $(n, m, \epsilon)$ -AMD code as the encoding function along with the decoding function for this scenario, where n = |G| and  $\epsilon$  is the maximum probability of adversary success.

## I-Regular AMD Codes

An AMD code is *l* regular if all source encryption spaces have size *l*. We will be considering *l*-regular codes.

### **R-Optimal AMD Codes**

A  $(n, m, l, \epsilon)$ -weak AMD code is R-optimal if the maximal probability of adversary success is equal to the average probability of success. This occurs when:

$$\epsilon = \frac{l(m-1)}{(n-1)}$$

< ロ > < 同 > < 三 > < 三 > .

#### Definition

An  $(n, m, l, \lambda)$ -EDF in a group G where n = |G|, is a set of m  $(\geq 2)$  disjoint subsets of G with size l such that each non-zero element from G occurs precisely  $\lambda$  times as a difference between two distinct sets.

### Example

$$\{A_0=\{0,1\},A_1=\{2,4\}\}$$
 is a (9,2,2,1)-EDF in  $\mathbb{Z}_9$ 

| - | 01 | 24 |
|---|----|----|
| 0 |    | 75 |
| 1 |    | 86 |
| 2 | 21 |    |
| 4 | 43 |    |

< 同 × I = >

## Connecting AMD Codes and EDFs

## Maura B. Paterson, Douglas R. Stinson (2016)

An (R-optimal) weak  $(n, m, l, \epsilon)$ -AMD code is equivalent to an  $(n, m, l, \lambda)$ -EDF where  $\lambda = \frac{l^2 m(m-1)}{n-1}$ .

#### Example

 $\{\{0,1\},\{2,4\}\}$  is equivalent to a  $(9,2,2,\frac{1}{4})$ -AMD code



## Connecting AMD Codes and EDFs

## Maura B. Paterson, Douglas R. Stinson (2016)

An (R-optimal) weak  $(n, m, l, \epsilon)$ -AMD code is equivalent to an  $(n, m, l, \lambda)$ -EDF where  $\lambda = \frac{l^2 m(m-1)}{n-1}$ .

#### Example

 $\{\{0,1\},\{2,4\}\}$  is equivalent to a  $(9,2,2,\frac{1}{4})$ -AMD code



# Strong External and Circular Difference Families

Along with EDFs we also define strong EDFs:

#### Definition

A strong  $(n, m, l, \lambda)$ -EDF in a group G is a set of m disjoint subsets of G with size I such that for each  $0 \le i \le m - 1$  every non-zero element from G occurs precisely  $\lambda$  times as a difference between  $A_i$  and  $A_j$  for each  $0 \le j \le m - 1, i \ne j$ .

In 2023 Stinson and Veitch defined a new EDF construction based on non-malleable AMD codes:

#### Definition

An  $(n, m, l, \lambda) - c$ -circular EDF in a group G is a set of m disjoint subsets of G with size I such that each non-zero element from G occurs precisely  $\lambda$  times in the differences between all sets  $A_i$  and  $A_j$  where

$$j \equiv i + c \mod m$$
.

< ロ > < 同 > < 回 > < 回 >

We define a new generalised framework for EDFs defined in terms of the directed edges of a digraph.

#### Definition

Let G be a group of order n, and let  $\mathcal{A} = (A_0, A_1, \dots, A_{m-1})$  be disjoint subsets of G of size l. Let H be a labelled digraph on m vertices  $\{0, 1, \dots, m-1\}$  and let  $\overrightarrow{E}(H)$  be the set of directed edges of H. Then  $\mathcal{A}$  is said to be an  $(n, m, l, \lambda; H)$ -EDF if the following multiset equation holds:

$$\bigcup_{i,j)\in \overrightarrow{E}(H)} \Delta(A_j,A_i) = \lambda(G \setminus \{0\}).$$

We call this an H-defined EDF.

# EDFs and Circular EDFs

### Definition: Complete Graph $K_m$

We define the complete graph  $K_m$  as  $V(K_m) = \{0, 1, \dots, m-1\}$ and  $\overrightarrow{E}(K_m) = \{(i,j) : 0 \le i, j \le m-1, i \ne j\}.$ 

#### Theorem (2025, $SH \setminus CJ \setminus SM$ )

A  $(n, m, l, \lambda; K_m)$ -EDF is precisely a  $(n, m, l, \lambda)$ -EDF.

## Definition: Directed Cycle $\overrightarrow{C}_m$

We define the directed cycle 
$$\overrightarrow{C}_m$$
 as  $V(\overrightarrow{C}_m) = \{0, 1, \dots, m-1\}$   
and  $\overrightarrow{E}(\overrightarrow{C}_m) = \{(i, i+1 \mod m) : 0 \le i \le m-1\}.$ 

## Theorem (2025, $SH \setminus CJ \setminus SM$ )

A  $(n, m, l, \lambda; \overrightarrow{C}_m)$ -EDF is precisely a  $(n, m, l, \lambda)$  - 1-circular EDF (CEDF).

# Bipartite and Strong EDFs

We also define a new type of EDF defined using this digraph framework.

## Definition: Complete bipartite digraph $\vec{K}_{a,b}$

We define the oriented complete bipartite digraph  $\overrightarrow{K}_{a,b}$ : bipartition  $A \cup B$  where  $A = \{0, \dots, a-1\}$  and  $B = \{a, \dots, a+b-1\}$ ; the standard set of directed edges will be  $\overrightarrow{E}(\overrightarrow{K}_{a,b}) := \{(i,j) : i \in A, j \in B\}.$ 

Here we show the digraph framework way to describe a strong EDF:

### Definition

Let  $\mathcal{A} = \{A_0, \ldots, A_{m-1}\}$  be a collection of disjoint *l*-subsets of a group G.  $\mathcal{A}$  is an  $(n, m, l, \lambda)$ -strong EDF (SEDF) precisely if, for each i,  $(A_0, A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{m-1}; A_i)$  is,an  $(n, m, l, \lambda; \overrightarrow{K}_{m-1,1})$ -EDF.

Let G be a group of order n. Let H be a graph on m vertices and let  $\overrightarrow{H}$  denote any orientation of H. If  $\mathcal{A}$  is an  $(n, m, l, \lambda; \overrightarrow{H})$ -EDF, then  $\mathcal{A}$  is an  $(n, m, l, 2\lambda; H)$ -EDF.

## Theorem (2025, $SH \setminus CJ \setminus SM$ )

Let G be a group of order n. Let H be a graph on m vertices and let  $\overrightarrow{H}$  denote any orientation of H. If  $\mathcal{A} = (A_0, \ldots, A_{m-1})$  is an  $(n, m, l, \lambda; H)$ -EDF and  $\Delta(A_i, A_j) = \Delta(A_j, A_i)$  for all  $0 \le i \ne j \le m - 1$  then  $\lambda$  is even and  $\mathcal{A}$  is an  $(n, m, l, \lambda/2; \overrightarrow{H})$ -EDF.

# Strong Circular External Difference Families

#### Definition: Shannon Veitch and Douglas R. Stinson (2023)

A strong  $(n, m, l, \lambda)$ -circular EDF in a group G is a set of m disjoint subsets of G with size I such that each non-zero element from G occurs precisely  $\lambda$  times as a difference between  $A_i$  and  $A_j$  where

 $j \equiv i + c \mod m$ 

for each  $0 \leq j \leq m - 1$ .

## Theorem: Huawei Wu, Jing Yang and Keqin Feng (2024)

An  $(n, m, l; \lambda) - 1$ -SCEDF in a finite abelian group G exists only when m = 2.

### Theorem: Huawei Wu, Jing Yang and Keqin Feng (2024)

All SCEDFs are constructed by patching together several SEDFs with the parameter m = 2.

#### Theorem

If  $m \equiv 0 \mod 4$ , then there is an  $(ml^2 + 1, m, l; 1) - 1 - CEDF$  on an additive abelian group for any  $l \ge 1$ .

#### Theorem

If  $m \equiv 2 \mod 4$ , then there is an  $(ml^2 + 1, m, l; 1) - 1 - CEDF$  on an additive abelian group for any  $l \ge 1$ .

#### Theorem

If I and m are odd then there is no  $(ml^2 + 1, m, l; 1) - 1 - CEDF$  in an additive abelian group. (Update: in a cyclic group)

## Shannon Veitch, Douglas R. Stinson (2023)

Let q = 4m + 1 be a prime power, let  $\alpha \in \mathbb{F}_q$  be a primitive element. Define

$$A_0 = \{1, \alpha^{2m}\}$$

and for  $1 \le j \le m - 1$  define

$$A_j = \alpha^{2j} A_0.$$

Then  $\{A_0, A_1, \ldots, A_{m-1}\}$  is a (q, m, 2, 1) - 1-CEDF in  $\mathbb{F}_q$  if and only if  $\alpha^4 - 1$  is a quadratic non-residue.

# **CEDF** Construction

### Example

Let m = 4 then  $q = \mathbb{Z}_{17}$ ,  $\alpha = 3$  is a primitive element,

 $\alpha^4-1=12$  is a quadratic non-residue so the following sets form a (17,4,2,1) - 1–CEDF:

$$A_0 = \{1, 16\}, A_1 = \{9, 8\}, A_2 = \{13, 4\}, A_3 = \{15, 2\}$$

| -  | 1 16 | 98    | 13 4 | 15 2 |
|----|------|-------|------|------|
| 1  |      |       |      | 3 16 |
| 16 |      |       |      | 1 14 |
| 9  | 8 10 |       |      |      |
| 8  | 79   |       |      |      |
| 13 |      | 45    |      |      |
| 4  |      | 12 13 |      |      |
| 15 |      |       | 2 11 |      |
| 2  |      |       | 6 15 |      |

Struan McCartney (St Andrews) Ne

New CEDFs and Related Constructions

Let  $l \equiv 3 \mod 4$   $(l \in \mathbb{N})$ . Denote  $z = \frac{3}{4}(l-1)^2 \in \mathbb{N}$ . Define the following subsets of  $\mathbb{Z}_{\frac{3l^2+1}{2}} \times \mathbb{Z}_2$ : •  $A_0 = \bigcup_{i=0}^{l-1} \{(i,0)\}$ •  $A_1 = \bigcup_{i=0}^{l-1} \{(z(i-1) - l - i, i+1)\}$ •  $A_2 = \bigcup_{i=0}^{l-1} \{(zi - l, i)\}$ . Then  $(A_0, A_1, A_2)$  form a  $(3l^2 + 1, 3, l, 1)$ -1-CEDF in the non-cyclic abelian group  $\mathbb{Z}_{\frac{3l^2+1}{2}} \times \mathbb{Z}_2$ .

Let m = 2,  $l \in \mathbb{Z}$  and let d be a divisor of l. Define  $\mathcal{A} = (A_0, A_1)$ , where  $A_0$  and  $A_1$  are subsets of  $\mathbb{Z}_{2l^2+1}$  defined as:

• 
$$A_0 = \{i : 0 \le i \le l-1\};$$
  
•  $A_1 = \bigcup_{j=0}^{d-1} \{\frac{l^2(2j+1)}{d} + (i+1)l : 0 \le i \le \frac{l}{d} - 1\}.$   
A is a  $(2l^2 + 1, 2, l, 1) - 1$ -CEDF in  $\mathbb{Z}_{2l^2+1}.$ 

→ < Ξ →</p>

# New CEDF Construction and CEDF Equivalence

#### Example

$$\{A_0 = \{0, 1, 2\}, A_1 = \{12, 15, 18\}\}$$
 and  $\{B_0 = \{0, 1, 2\}, B_1 = \{6, 12, 18\}\}$  are (19,2,3,1)-EDF in  $\mathbb{Z}_{19}$ .

| d=1 | 0 1 2    | 12 15 18 | d=3 | 0 1 2    | 6 12 18 |
|-----|----------|----------|-----|----------|---------|
| 0   |          | 741      | 0   |          | 13 7 1  |
| 1   |          | 852      | 1   |          | 14 8 2  |
| 2   |          | 963      | 2   |          | 15 9 3  |
| 12  | 12 11 10 |          | 6   | 654      |         |
| 15  | 15 14 13 |          | 12  | 12 11 10 |         |
| 18  | 18 17 16 |          | 18  | 18 17 16 |         |

For two  $(n, m, l, \lambda)$ -c-CEDFs in  $G \mathcal{A} = (A_0, \ldots, A_{m-1})$  and  $\mathcal{B} = (B_0, \ldots, B_{m-1})$ , there is a notion of equivalence such that if  $\mathcal{A}$  is equivalent to  $\mathcal{B}$  then the difference multisets have the 'same structure'.

# New CEDF Construction and CEDF Equivalence

#### Example

$$\{A_0 = \{0, 1, 2\}, A_1 = \{12, 15, 18\}\}$$
 and  $\{B_0 = \{0, 1, 2\}, B_1 = \{6, 12, 18\}\}$  are (19,2,3,1)-EDF in  $\mathbb{Z}_{19}$ .

| d=1 | 0 1 2    | 12 15 18 | d=3 | 0 1 2    | 6 12 18 |
|-----|----------|----------|-----|----------|---------|
| 0   |          | 741      | 0   |          | 13 7 1  |
| 1   |          | 8 5 2    | 1   |          | 14 8 2  |
| 2   |          | 963      | 2   |          | 15 9 3  |
| 12  | 12 11 10 |          | 6   | 654      |         |
| 15  | 15 14 13 |          | 12  | 12 11 10 |         |
| 18  | 18 17 16 |          | 18  | 18 17 16 |         |

For two  $(n, m, l, \lambda)$ -c-CEDFs in  $G \mathcal{A} = (A_0, \ldots, A_{m-1})$  and  $\mathcal{B} = (B_0, \ldots, B_{m-1})$ , there is a notion of equivalence such that if  $\mathcal{A}$  is equivalent to  $\mathcal{B}$  then the difference multisets have the 'same structure'.

Let  $m \in \mathbb{Z}$  be even and let  $l \in \mathbb{Z}$ . Define  $\mathcal{A} = (A_0, A_1, A_2, \dots, A_{m-3}, A_{m-2}, A_{m-1})$  to be the following (ordered) collection of sets in  $\mathbb{Z}_{ml^2+1}$ : •  $A_0 = \{i : 0 < i < l-1\};$ •  $A_1 = \{l^2 + (i+1)l : 0 \le i \le l-1\};$ • for  $1 \le r \le \frac{m}{2} - 1$ ,  $A_{2r} = \{(2r-1)l^2 + i : 0 \le i \le l-1\}$  and  $A_{2r+1} = \{ (\frac{m}{2} + r)l^2 + (i+1)l : 0 \le i \le l-1 \}.$ when  $m \in \{2, 4, 6, 8\}$ ,  $\mathcal{A}$  is a  $(ml^2 + 1, m, l, 1)$ -1-CEDF in  $\mathbb{Z}_{ml^2+1}$ .

伺 ト イ ヨ ト イ ヨ ト

#### Definition

An  $(n, m, l, \lambda)$  – adjacent – disjoint – c – circular EDF in a group G is a set  $\{A_0, A_1, \ldots, A_{m-1}\}$  of subsets of G with size I such that the multiset of differences between all pairs of sets  $A_i$  and  $A_i$  where

 $j \equiv i + c \mod m$ 

consists of  $\lambda$  copies of  $G \setminus \{0\}$ .

This construction is similar to an CEDF, without the condition that non-adjacent sets are disjoint.

Let  $m \in \mathbb{Z}$  be even and let  $l \in \mathbb{Z}$ . Define  $\mathcal{A} = (A_0, A_1, A_2, \dots, A_{m-3}, A_{m-2}, A_{m-1})$  to be the following (ordered) collection of sets in  $\mathbb{Z}_{ml^2+1}$ : •  $A_0 = \{i : 0 < i < l-1\};$ •  $A_1 = \{l^2 + (i+1)l : 0 \le i \le l-1\};$ • for  $1 \le r \le \frac{m}{2} - 1$ ,  $A_{2r} = \{(2r-1)l^2 + i : 0 \le i \le l-1\}$  and  $A_{2r+1} = \{ (\frac{m}{2} + r)l^2 + (i+1)l : 0 \le i \le l-1 \}.$  $\mathcal{A}$  is a  $(ml^2 + 1, m, l, 1)$ -1-Adjacent-Disjoint-CEDF in  $\mathbb{Z}_{ml^2+1}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let m be even and  $l(>1)\in\mathbb{Z}.$  Consider the following subsets of  $\mathbb{Z}_{ml^2+1}$ :

• 
$$A_0 = \{i : 0 \le i \le l-1\};$$
  
• for  $1 \le r \le (m-4)/2$ ,  $A_r = \{2l^2r + l + i : 0 \le i \le l-1\};$   
•  $A_{(m-2)/2} = \{(m-2)l^2 + i : 0 \le i \le l-1\};$   
•  $A_{m/2} = \{(m-2)l^2 + 2l(i+1) : 0 \le i \le l-1\}.$   
Then  $(A_0, A_{m/2}, A_1, A_{m/2}, \dots, A_{(m-2)/2}, A_{m/2})$  is an  $ml^2 + 1, m, l, 1$ -adiacent disjoint CEDE.

#### Remark

With the same set  $A_{m/2}$  occurring multiple times this is also equivalent to a  $(ml^2 + 1, m/2 + 1, l, 1; K_{m/2,1})$ - EDF where the sets are  $(A_0, A_1, \ldots, A_{(m-2)/2}; A_{m/2})$ .

# Equivalence in Adjacent-Disjoint Constructions

### Theorem (2025, SM)

Let *m* be even and  $I, d \in \mathbb{Z}$  where *d* divides *l* then define the following sets in  $\mathbb{Z}_{m/2+1}$ :

• 
$$A_0 = \{i : 0 \le i \le l-1\}$$

• for 
$$0 \le r \le \frac{m}{2} - 1$$
,

$$A_{2r+1} = \bigcup_{k=0}^{d-1} \{ \frac{(2k+1)l^2}{d} + 2rl^2 + (i+1)l : 0 \le i \le \frac{l}{d} - 1 \}$$

• for 
$$0 \le r \le \frac{m}{2} - 2$$
,

$$A_{2(r+1)} = \{\frac{l^2}{d} + i : 0 \le i \le l-1\}$$

naa

Then  $(A_0, A_1, \ldots, A_{m-2}, A_{m-1})$  is a  $(ml^2 + 1, m, l, 1)$ adjacent-disjoint CEDF in  $\mathbb{Z}_{ml^2+1}$ , where each distinct value of d corresponds to a non-equivalent adjacent-disjoint CEDF. New CEDFs and Related Constructions

Struan McCartney (St Andrews)

## Non-Abelian CEDFs

## Example

Here is a 
$$(D_{28}, 3, 3, 1)$$
-CEDF: $\{A_0 = \{id, r^{11}, r^8\}, A_1 = \{r^4, sr^2, sr^6\}, A_2 = \{r^3, r^5, sr^4\}\}$ 

| -               | id $r^{11} r^8$                                  | r <sup>4</sup> sr <sup>2</sup> sr <sup>6</sup>   | $r^{3} r^{5} sr^{4}$                           |  |
|-----------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|--|
| id              |                                                  |                                                  | r <sup>11</sup> r <sup>9</sup> sr <sup>4</sup> |  |
| $r^{11}$        |                                                  |                                                  | r <sup>8</sup> r <sup>6</sup> sr <sup>7</sup>  |  |
| r <sup>8</sup>  |                                                  |                                                  | r <sup>5</sup> r <sup>3</sup> sr <sup>10</sup> |  |
| r <sup>4</sup>  | r <sup>4</sup> r <sup>10</sup> r <sup>7</sup>    |                                                  |                                                |  |
| sr <sup>2</sup> | sr <sup>2</sup> sr <sup>8</sup> sr <sup>5</sup>  |                                                  |                                                |  |
| sr <sup>6</sup> | sr <sup>6</sup> sr <sup>12</sup> sr <sup>9</sup> |                                                  |                                                |  |
| r <sup>3</sup>  |                                                  | r <sup>13</sup> sr <sup>13</sup> sr <sup>3</sup> |                                                |  |
| r <sup>5</sup>  |                                                  | r sr <sup>11</sup> sr                            |                                                |  |
| sr <sup>4</sup> |                                                  | s r <sup>12</sup> r <sup>2</sup>                 |                                                |  |

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

- CEDF background: "Circular external difference families, graceful labellings and cyclotomy", Maura B. Paterson and Douglas R. Stinson, Discrete Mathematics 347 (2024),
- Our recent work: "Digraph-defined external difference families and new circular external difference families", Sophie Huczynska, Christopher Jefferson, Struan McCartney, ArXiV preprint arXiv:2504.20959.

- Continue investigating non-cyclic and non-abelian CEDFs.
- Working with External Difference Families in a directed graph theoretical framework.
  - -Bipartite Graphs
  - -Tournaments
  - -Bidirectional Cycles
  - -Paths
- Consider in which groups can we obtain a directed graph defined EDF for a specific digraph H.