

Kumamoto castle

Amakusa Sea

Aso Mountain

Non-commutative association schemes having divisible design graphs as relations from pseudo-cyclic association schemes

Koji Momihara

Kumamoto University, Japan

Outline

- GDDs from Hadamard matrices
- GDDs from balanced generalized weighing matrices

Divisible design graph

- BGW matrices from pseudo-cyclic association schemes
- DD graphs from pseudo-cyclic association schemes

3 Isomorphism

- Isomorphism between non-commutative association schemes
- Transformation of pseudo-cyclic association schemes

Keywords: Group divisible design; Hadamard matrix, Balanced generalized weighing matrix; Divisible design graph; Pseudo-cyclic association scheme; Cyclotomic scheme; Conference graph; Godsil-McKay switching

Group divisible designs from Hadamard matrices

Replace +1 by I_2 and -1 by $J_2 - I_2$ in a Hadamard matrix.

	(1	0	1	0	1	0	1	0)
	0	1	0	1	0	1	0	0 1
$(1 \ 1 \ 1 \ 1 \)$	1	0	1	0	0	1	0	1
	0	1	0	1	1	0	1	0
	1	0	0	1	1	0	0	$\frac{1}{1}$
(1 -1 -1 1)	0	1	1	0	0	1	1	0
	1	0	0	1	0	1	1	0
	0	1	1	0	1	0	0	1)

• $\langle x, y \rangle = 0$ for any two distinct rows x, y from the same group.

• $\langle x, y \rangle = 2$ for any two rows x, y from distinct groups.

Group divisible design

Definition: GD design

- V: a finite set of v = mn > 0 elements
- G: a partition of V into m subsets (called groups) of size n
- \mathcal{B} : a set of b subsets (called **blocks**) of size k of V

(V, G, B) is called a **group divisible (GD) design** with parameters $(m, n, k, \lambda_1, \lambda_2)$ if

- (1) every pair of distinct elements of V in the same group occurs in exactly λ_1 blocks, and
- (2) every pair of distinct elements of V from distinct groups occurs in exactly λ_2 blocks.

We are concerned with only **symmetric** GD designs satisfying v = b.

The construction of GDDs using Hadamard matrices was generalized by Gibbons-Mathon (1987) ¹ and De Launey (1987) ² using generalized Bhaskar Rao designs (or balanced generalized weighing matrices for symmetric GD design).

Definition: BGW matrix

A balanced generalized weighing (BGW) matrix with parameters (v, k, λ) over a group *G* is a square matrix $M = (m_{i,j})$ of order *v* with entries from $G \cup \{0\}$ s.t.

- (i) every row of M contains exactly k nonzero entries, and
- (ii) for any distinct $i, h \in \{1, 2, ..., v\}$, every element of *G* is contained exactly λ times in the multiset $\{m_{i,j}m_{h,j}^{-1} | 1 \le j \le v, m_{i,j}, m_{h,j} \ne 0\}$.

¹P. B. Gibbons, R. Mathon, Construction methods for Bhaskar Rao and related designs, *J. Austral. Math. Soc. Ser. A* **42** (1987) 5–30.

²W. De Launey, (**0**, *G*)-*Designs and Applications*, PhD thesis, Univ. of Sydney, (1987).

GDDs from BGW matrices

Theorem

Let *M* be a BGW matrix with parameters (v, k, λ) over *G* of order *g*. Replace the elements of *G* by the corresponding $g \times g$ permutation matrices and 0-entry by the $g \times g$ null matrix in *M*. Then, the resulting matrix *M'* is an incidence matrix of a symmetric GD design with parameters $(v, g, k, 0, \lambda)$.

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \Rightarrow M' = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Note that M is symmetric but M' is not necessarily symmetric.

Divisible design graph

Let *N* be an incidence matrix of symmetric GD design with parameters $(m, n, k, \lambda_1, \lambda_2)$. If *N* is symmetric and off-diagonal, *N* can be viewed as an adjacency matrix of a *k*-regular graph, called a **divisible design (DD)** graph with parameters $(m, n, k, \lambda_1, \lambda_2)$, whose vertex-set can be partitioned into *m* classes of size *n* s.t.

- 1. any two vertices from the same class have exactly λ_1 common neighbors; and
- 2. any two vertices from different classes have exactly λ_2 common neighbors.

DD graphs were introduced by Haemers-Kharaghani-Meulenberg³.

³W. H. Haemers, H. Kharaghani, M. A. Meulenberg, Divisible design graphs, *J. Combin. Theory, Ser. A* **118** (2011) 978–992.

Association schemes

Definition: Association scheme (AS)

A *d*-class association scheme on a finite set *X* is a partition of $X \times X$ into subsets R_0, R_1, \ldots, R_d , called **relations**, s.t.

(1)
$$R_0 = \{(x, x) \mid x \in X\},\$$

(2)
$$R_i^{\top} := \{(y, x) \mid (x, y) \in R_i\} \in \{R_0, R_1, \dots, R_d\}$$
 for any i ,

(3) for all $i, j, k \in \{0, 1, \dots, d\}$, there is an integer $p_{i,j}^k$ s.t. for all $(x, y) \in R_k$, $|\{z \in X \mid (x, z) \in R_i \text{ and } (z, y) \in R_j\}| = p_{i,j}^k$.

Let A_i be the adjacency matrix of R_i . By (3), for $i, j \in \{0, 1, \dots, d\}$,

$$A_i A_j = \sum_{k=0}^d p_{i,j}^k A_k$$

for some positive integers $p_{i,j}^k$, called **intersection numbers** of the AS. We denote the AS by $(X, \{R_i\}_{i=0}^d)$ or $(X, \{A_i\}_{i=0}^d)$.

The first eigenmatrix

If $A_i A_j = A_j A_i$ for all $i, j, (X, \{A_i\}_{i=0}^d)$ is said be **commutative**. In this case, A_0, A_1, \ldots, A_d form a basis of a commutative algebra, called the **Bose-Mesner algebra**, generated by A_0, A_1, \ldots, A_d over \mathbb{C} . In particular, if $A_i = A_i^{\mathsf{T}}$ for all $i, (X, \{A_i\}_{i=0}^d)$ is said be **symmetric**.

 $E_0 = \frac{1}{|X|}J, E_1, \dots, E_d$: the unique primitive idempotents of the Bose-Mesner algebra of $(X, \{R_i\}_{i=0}^d)$, which form a basis of the algebra. Define $P = (P_j(i))_{0 \le i,j \le d}$, called the **first eigenmatrix**, satisfying

$$(A_0, A_1, \ldots, A_d) = (E_0, E_1, \ldots, E_d)P.$$

Note that $P_i(j)$ is an eigenvalue of A_i as $A_iE_j = P_i(j)E_j$.

The integers $k_i = P_i(0)$, $0 \le i \le d$, and $m_i = \operatorname{rank} E_i$, $0 \le i \le d$, are called **valencies** and **multiplicities**, respectively.

Pseudo-cyclic association scheme

A *d*-class AS having the nontrivial multiplicities $m_1 = m_2 = \cdots = m_d$ is called **pseudo-cyclic**.

Lemma

The nontrivial valencies of a pseudo-cyclic AS are all same, which coincide with the nontrivial multiplicity.

Example (Cyclotomic scheme)

Let $X = \mathbb{F}_q$ be the finite field of order q and C_0 be a multiplicative subgroup of index d with $-1 \in C_0$. Furthermore, let $C_0, C_1, \ldots, C_{d-1}$ be the cosets of C_0 . Define

$$(x, y) \in R_{i+1}$$
 iff $x - y \in C_i$.

Then, $(X, \{R_i\}_{i=0}^d)$ with R_0 the diagonal relation is a pseudo-cyclic AS.

BGW matrices from pseudo-cyclic association schemes

Proposition

Let $\mathcal{A} = (X, \{R_i\}_{i=0}^d)$ be a *d*-class symmetric pseudo-cyclic AS with common valency k, whose first eigenmatrix has the form

$$P = \begin{pmatrix} 1 & k \mathbf{1}_d^{\mathsf{T}} \\ \mathbf{1}_d & P' \end{pmatrix}$$

for some square circulant matrix P' of size d, where the columns of P' are labeled by A_1, A_2, \ldots, A_d in this order. Let $G = \langle \omega \rangle$ be a cyclic group of order d with identity 1. Then,

$$M_{\mathcal{A}} = \begin{pmatrix} 0 & \mathbf{1}_{v}^{\mathsf{T}} \\ \mathbf{1}_{v} & \sum_{i=1}^{d} \omega^{i-1} A_{i} \end{pmatrix}$$

is a BGW matrix with parameters (v + 1, v, (v - 1)/d) over G.

Key property

We call P' the principal part of P. Assume that P' is circulant. Then,

$$\sum_{i=1}^{d} A_i A_{i+t} = \begin{cases} (k-1)J_v + (v-k)I_v & \text{if } t = 0, \\ k(J_v - I_v) & \text{if } t \ge 1, \end{cases}$$

where i + t takes the value in $\{1, 2, ..., d\}$ computed modulo d.

The principal parts P' of the following classes of ASs are circulant ⁴.

- 2 or 3-class pseudo-cyclic ASs
- Cyclotomic schemes
- Strongly regular decompositions of Latin or negative Latin square type

⁴M. Muzychuk, I. Ponomarenko, On pseudocyclic association schemes, *Ars Math. Contemp.* **5** (2012) 1–25.

Koji Momihara (Kumamoto University, Japan)

DD graphs from pseudo-cyclic association schemes

 $\mathcal{A} = (X, \{A_i\}_{i=0}^d)$: a symmetric pseudo-cyclic AS s.t. P' is circulant C: the circulant matrix of order d with the first row $(0, 1, 0, 0, \dots, 0)$ R: the back diagonal matrix of order d Define for $t = 0, 1, \dots, d = 1$ the (0, 1)-matrix B_0 , to be

Define for $t = 0, 1, \dots, d - 1$, the (0, 1)-matrix $B_{0,t}$ to be

$$B_{0,t} = \begin{pmatrix} C^t & O_{d,dv} \\ O_{dv,d} & C^{-t} \otimes I_v \end{pmatrix}.$$

Furthermore, define for $t = 0, 1, \dots, d - 1$, the (0, 1)-matrix $B_{1,t}$ to be

$$B_{1,t} = \begin{pmatrix} O_d & C^t \otimes \mathbf{1}_v^\top \\ C^{-t} \otimes \mathbf{1}_v & \sum_{i=1}^d C^i R \otimes A_{i+t} \end{pmatrix}.$$

Theorem 1 (M.-Suda)

 $\{B_{i,t} | i = 0, 1, 0 \le t \le d - 1\}$ forms a (2d - 1)-class non-commutative AS. In particular, $B_{1,t}, 0 \le t \le d - 1$, are DD graphs with parameters (d(v + 1), v, 0, k).

Denote the resulting AS by $\mathcal{D}_{\mathcal{R}}$ for the assumed AS \mathcal{R} .

Koji Momihara (Kumamoto University, Japan)

Example ($B_{0,t}$'s in the d = 4 case)

Let d = 4. Then, $B_{i,t}$, i = 0, 1, t = 0, 1, 2, 3, are given as follows.

B _{0,0} =	(1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	O _{4,4v}), <i>B</i> _{0,1} =	(0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	O _{4,4v}				
	O _{4r,4}			$ I_{\nu} \\ O_{\nu} \\ O_{\nu} \\ O_{\nu} \\ O_{\nu} $	$ \begin{array}{c} O_v \\ I_v \\ O_v \\ O_v \\ O_v \end{array} $	$ \begin{array}{c} O_{v} \\ O_{v} \\ I_{v} \\ O_{v} \end{array} $	$ \begin{array}{c} O_v \\ O_v \\ O_v \\ I_v \end{array} $	O _{4v,4}				$ \begin{array}{c} O_{v} \\ I_{v} \\ O_{v} \\ O_{v} \\ O_{v} \end{array} $	$ \begin{array}{c} O_{v} \\ O_{v} \\ I_{v} \\ O_{v} \end{array} $	$ \begin{array}{c} O_v\\ O_v\\ O_v\\ I_v \end{array} $	$ \begin{array}{c} I_v \\ O_v \\ O_v \\ O_v \\ O_v \end{array} $,		
<i>B</i> _{0,2} =	(0 0 1 0	0 0 0 1	1 0 0 0	0 1 0 0		04	1,4v	`	$, B_{0,3} =$	(0 1 0 0	0 0 1 0	0 0 0 1	1 0 0 0					
	O _{4v,4}				$ \begin{array}{c} O_{v} \\ O_{v} \\ I_{v} \\ O_{v} \end{array} $	$ \begin{array}{c} O_{v} \\ O_{v} \\ O_{v} \\ I_{v} \end{array} $	$ I_{\nu} \\ O_{\nu} \\ O_{\nu} \\ O_{\nu} $	$ \begin{array}{c} O_v \\ I_v \\ O_v \\ O_v \end{array} $, 10,3 -	O _{4v,4}			$ \begin{array}{c} O_v \\ O_v \\ O_v \\ I_v \end{array} $	$ I_{\nu} \\ O_{\nu} \\ O_{\nu} \\ O_{\nu} $	$ \begin{array}{c} O_{\nu} \\ I_{\nu} \\ O_{\nu} \\ O_{\nu} \end{array} $	$ \begin{array}{c} O_v \\ O_v \\ I_v \\ O_v \end{array} $). 	

Example $(B_{1,t}$'s in the d = 4 case)

$$B_{1,0} = \begin{pmatrix} 0_{4} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 1_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} \\ 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} & 0_{1}^{\mathsf{T}} &$$

Normalized BGW matrices ⇒ Association schemes?

Let $\mathcal{A} = (X, \{A_i\}_{i=0}^d)$ be a *d*-class pseudo-cyclic symmetric AS s.t. the principal part of its first eigenmatrix is circulant. Recall that

$$M_{\mathcal{R}} = \begin{pmatrix} 0 & \mathbf{1}_{v}^{\mathsf{T}} \\ \mathbf{1}_{v} & \sum_{i=1}^{d} \omega^{i-1} A_{i} \end{pmatrix}$$

is a BGW matrix with parameters (v + 1, v, (v - 1)/d) over $G = \langle \omega \rangle$.

For $a \in X$, let $M_{\mathcal{A}}^{(a)}$ be the BGW matrix obtained by re-normalizing $M_{\mathcal{A}}$ so that its *a*th row and *a*th column have only the identity of *G* or **0**. Then, removing the *a*th row and *a*th column, we have a symmetric matrix of order v of the form $\sum_{i=1}^{d} \omega^{i-1} A_i^{(a)}$ for some (0, 1)-matrices $A_i^{(a)}$, $i = 1, 2, \ldots, d$.

Problem

Does
$$\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}$$
 form an AS?

Example

 $M_{\mathcal{R}}$ is a BGW matrix with parameters (8, 7, 2) over $G = \langle \omega \rangle$ obtained from the 3-class cyclotomic scheme $\mathcal{R} = (\mathbb{F}_7, \{A_i\}_{i=0}^3)$. Let $a = 0 \in \mathbb{F}_7$.

Isomorphism between new non-commutative ASs

Isomorphism

We call that two ASs $(X, \{A_i\}_{i=0}^d)$ and $(X, \{A'_i\}_{i=0}^d)$ are **isomorphic** if $\{PA_iP^\top \mid 0 \le i \le d\} = \{A'_i \mid 0 \le i \le d\}$ for some permutation matrix *P*.

Theorem 2 (M.-Suda)

Let \mathcal{A}_1 and \mathcal{A}_2 be two *d*-class symmetric pseudo-cyclic ASs of order *v* s.t. the principal parts of their first eigenmatrices are circulant. If $\mathcal{D}_{\mathcal{A}_1}$ and $\mathcal{D}_{\mathcal{A}_2}$ are isomorphic, \mathcal{A}_1 and \mathcal{A}_2 are isomorphic or there exists $a \in X$ s.t. $\mathcal{A}_1^{(a)}$ is an AS isomorphic to \mathcal{A}_2 .

$$\mathcal{A}^{(a)} := \{A_i^{(a)} | i = 1, 2, \dots, d\} \cup \{I_v\}$$

The d = 2 case

Let $A_i(a) := \{x \in X | A_i(x, a) = 1\}$ for $a \in X$.

When d = 2, $A_i^{(a)}$, i = 1, 2, are given as follows (by suitable permutations of rows and columns):

$$A_{1}^{(a)} \sim \begin{pmatrix} 0 & 1_{k}^{\mathsf{T}} & 0_{k}^{\mathsf{T}} \\ 1_{k} & A_{1|1,1} & A_{2|1,2} \\ 0_{k} & A_{2|2,1} & A_{1|2,2} \end{pmatrix}, A_{2}^{(a)} \sim \begin{pmatrix} 0 & 0_{k}^{\mathsf{T}} & 1_{k}^{\mathsf{T}} \\ 0_{k} & A_{2|1,1} & A_{1|1,2} \\ 1_{k} & A_{1|2,1} & A_{2|2,2} \end{pmatrix}$$

while A_i , i = 1, 2, have the forms

$$A_1 \sim \begin{pmatrix} 0 & 1_k^{\mathsf{T}} & 0_k^{\mathsf{T}} \\ 1_k & A_{1|1,1} & A_{1|1,2} \\ 0_k & A_{1|2,1} & A_{1|2,2} \end{pmatrix}, A_2 \sim \begin{pmatrix} 0 & 0_k^{\mathsf{T}} & 1_k^{\mathsf{T}} \\ 0_k & A_{2|1,1} & A_{2|1,2} \\ 1_k & A_{2|2,1} & A_{2|2,2} \end{pmatrix},$$

where $A_{i|s,t}$ denote the submatrix of A_i obtained by restricting its rows to $A_s(a)$ and columns to $A_t(a)$.

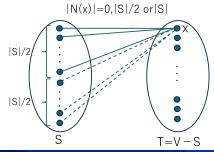
Godsil-McKay switching

Proposition (Godsil-McKay switching)

Let Γ be a graph. Assume that $V(\Gamma)$ has a subset S inducing a regular subgraph of Γ , and that each vertex in $T = V(\Gamma) \setminus S$ has 0, |S|/2 or |S| neighbors in S.

For each $x \in T$ having |S|/2 neighbors in *S*, delete the corresponding |S|/2 edges and join *x* instead to the |S|/2 other vertices in *S*.

Then, the resulting graph is cospectral to Γ .



The d = 2 case

Recall that $A_i(a) := \{x \in X \mid A_i(x, a) = 1\}$ for $a \in X$.

Remark

When d = 2, since each $\Gamma_i = (X, A_i)$, i = 1, 2, is a conference graph, $S = X \setminus (A_i(a) \cup \{a\})$ satisfies that |S| = (v - 1)/2 and each vertex in $T = A_i(a) \cup \{a\}$ has 0 or |S|/2 neighbors in S in Γ_i .

By applying Godsil-McKay switching to *S* in Γ_i , we have a cospectral graph, that is, the graph having $A_i^{(a)}$ as its adjacency matrix.

Hence, $\mathcal{A}^{(a)} = \{A_1^{(a)}, A_2^{(a)}, I_{\nu}\}$ forms a 2-class AS having the same first eigenmatrix with $\mathcal{A} = (X, \{A_i\}_{i=0}^2)$.

A counter-example in the d = 3 case

There is an example of a 3-class symmetric pseudo-cyclic AS $\mathcal{A} = (X, \{A_i\}_{i=0}^3)$ with 28 points s.t. $\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, 3\} \cup \{I_v\}$ is not an AS for some $a \in X^5$

⁵I. Miyamoto, A. Hanaki, Classification of association schemes with small vertices, http://math.shinshu-u.ac.jp/~hanaki/as.

Koji Momihara (Kumamoto University, Japan)

Cyclotomic schemes

Theorem 3 (M.-Suda)

Let $\mathcal{A} = (\mathbb{F}_q, \{A_i\}_{i=0}^d)$ be a *d*-class symmetric cyclotomic AS. Then, for any $a \in \mathbb{F}_q, \mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}$ forms a *d*-class symmetric **pseudo-cyclic** AS having the same intersection numbers with \mathcal{A} .

The problem is reduced to computing

$$\sum_{j=0}^{d-1} \left| \{ x \in \mathbb{F}_q \mid x \in C_j \cap (C_{j+h} + c) \cap (C_{j+i} + d) \} \right|$$

for some $c, d \in \mathbb{F}_q$.

Problems

Problem

Find a class of *d*-class pseudo-cyclic AS \mathcal{A} such that $\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}$ are again pseudo-cyclic ASs for d > 2.

Problem

Determine whether a symmetric cyclotomic AS \mathcal{A} is isomorphic to $\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}, a \in X.$

Problem

How about the case when \mathcal{R} is nonsymmetric?

Problems

Problem

Find a class of *d*-class pseudo-cyclic AS \mathcal{A} such that $\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}$ are again pseudo-cyclic ASs for d > 2.

Problem

Determine whether a symmetric cyclotomic AS \mathcal{A} is isomorphic to $\mathcal{A}^{(a)} = \{A_i^{(a)} | i = 1, 2, ..., d\} \cup \{I_v\}, a \in X.$

Problem

How about the case when \mathcal{R} is nonsymmetric?

Thank you very much for your attention!

Koji Momihara (Kumamoto University, Japan)