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Symmetric group divisible design GDDs from Hadamard matrices

Group divisible designs from Hadamard matrices

Replace +1 by I> and =1 by J> — | in a Hadamard matrix.

1 0/1 0/1 0/1 0
0 1|0 1|0 1|0 1
11 1 1 10/10[0 1/0 1
1 1 -1 -1 0 1/0 1|1 0|1 0
1 -1 1 1|21 o0/0o1/1T0/0 1
1 -1 -1 1 0 1|1 0|0 1|1 0
10010110
0 1/1 0|1 o|o 1

@ (X,y) = Ofor any two distinct rows X,y from the same group.
@ (X,y) = 2for any two rows X,y from distinct groups.
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Symmetric group divisible design GDDs from Hadamard matrices

Group divisible design

Definition: GD design

V: a finite set of v = mn > 0 elements
G: a partition of V into m subsets (called groups ) of size n
B: a set of b subsets (called blocks ) of size k of V

(V, G, B) is called a group divisible (GD) design  with parameters

(m, n, k, A1, /12) if

(1) every pair of distinct elements of V in the same group occurs in
exactly A1 blocks, and

(2) every pair of distinct elements of V from distinct groups occurs in
exactly A, blocks.

We are concerned with only symmetric GD designs satisfying v = b.
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Symmetric group divisible design GDDs from Hadamard matrices

The construction of GDDs using Hadamard matrices was generalized by
Gibbons-Mathon (1987) * and De Launey (1987) 2 using generalized
Bhaskar Rao designs (or balanced generalized weighing matrices for
symmetric GD design).

Definition: BGW matrix

A balanced generalized weighing (BGW) matrix ~ with parameters
(v, k, 2) over a group G is a square matrix M = (m; ;) of order v with
entries from G U {0} s.t.

(i) every row of M contains exactly k nonzero entries, and

(i) for any distinct i, h € {1,2,...,V}, every element of G is contained
exactly A times in the multiset {m; ; m;lj [1<j<v,mj,mp;# 0}

1p. B. Gibbons, R. Mathon, Construction methods for Bhaskar Rao and related designs,
J. Austral. Math. Soc. Ser. A 42 (1987) 5-30.
2W. De Launey, (0, G)-Designs and Applications, PhD thesis, Univ. of Sydney, (1987).
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Symmetric group divisible design GDDs from balanced generalized weighing matrices

GDDs from BGW matrices

Let M be a BGW matrix with parameters (v, k, 2) over G of order g.
Replace the elements of G by the corresponding g x g permutation
matrices and O-entry by the g x g null matrix in M. Then, the resulting
matrix M’ is an incidence matrix of a symmetric GD design with
parameters (v, g, k, 0, 2).

1 0 0/1 0 0|1 O O

0 1 0/0 1 0|0 1 O

0 0 1/0 0 1|0 0 1

1 1 1 1 0 00 1 0|0 O 1
M:{l w wz]:M’= 01 0({0 0 1|1 0 O
1 o o 0 0 1/1 0 0|0 1 O

1 0 0|0 0 1/0 1 O

0 1 0/1 0 0|0 O 1

0 0 1/0 1 0|1 0 O

Note that M is symmetric but M’ is not necessarily symmetric.
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Divisible design graph

Divisible design graph

Let N be an incidence matrix of symmetric GD design with parameters
(my n, k, A1, A2). If N is symmetric and off-diagonal, N can be viewed as an
adjacency matrix of a k-regular graph, called a divisible design (DD)

graph with parameters (m, n, k, A1, 42), whose vertex-set can be
partitioned into m classes of size n s.t.

1. any two vertices from the same class have exactly 411 common
neighbors; and

2. any two vertices from different classes have exactly 22 common
neighbors.

DD graphs were introduced by Haemers-Kharaghani-Meulenberg 3.

SW. H. Haemers, H. Kharaghani, M. A. Meulenberg, Divisible design graphs, J. Combin.
Theory, Ser. A 118 (2011) 978-992.
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Association schemes

Definition: Association scheme (AS)

A d-class association scheme on a finite set X is a partition of X x X
into subsets Ry, R1,..., Ry, called relations , s.t.

(1) Ro={(x%x)|x € X},
(2) RT == {(%,¥)1(x,y) € Ri} € {Ro, Ry,..., Rq} for any i,
(3) foralli, j, k € {0,1,...,d}, there is an integer pi"j s.t. for all

(%Y) € R, {z€ X1(x,2) € R and (zy) € R}l = pf;.
Let A; be the adjacency matrix of R;. By (3), fori, j € {0,1,...,d},
AA| = Z k. A

for some positive integers pi i called intersection numbers of the AS.
We denote the AS by (X, {Ri}id=o) or (X, {Ai}id=o)'
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The first eigenmatrix

If AjAj = AjA foralli, j, (X, {A} )|s said be commutative . In this
case, Ag, Al, ., Aq form a baS|s of a commutative algebra, called the
Bose-Mesner algebra , generated by Ao, A1,..., Aq over C. In particular,
if Aj = AiT for all i, (X, {Ai}id=o) is said be symmetric .

Eo = |X|J Ei,..., Eg: the unique primitive idempotents of the
Bose-Mesner algebra of (X, {Ri}_d_ ), which form a basis of the algebra.
Define P = (Pj(i))o<i,j<d, called the first eigenmatrix , satisfying

(AO’ Ay,..., Ad) = (EO’ Es,..., Ed)P'
Note that P;j(]) is an eigenvalue of Aj as AiEj = Pi(j)E;.

The integers ki = Pj(0),0<i<d,andm =rank E;,0<i < d, are
called valencies and multiplicities , respectively.
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Divisible design graph BGW matrices from pseudo-cyclic association schemes

Pseudo-cyclic association scheme

A d-class AS having the nontrivial multiplicites m; = mp = «-« = mg is
called pseudo-cyclic .
Lemma

The nontrivial valencies of a pseudo-cyclic AS are all same, which
coincide with the nontrivial multiplicity.

Example (Cyclotomic scheme)

Let X = [Fq be the finite field of order q and Co be a multiplicative
subgroup of index d with —1 € Cy. Furthermore, let Cy, C4,...,Cqy-1 be
the cosets of Cy. Define

(X, y) € Ris1iff x =y € Ci.

Then, (X, {Ri}id—o) with Rg the diagonal relation is a pseudo-cyclic AS.
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BGW matrices from pseudo-cyclic association schemes

Proposition

Let A = (X, {Ri}id—o) be a d-class symmetric pseudo-cyclic AS with
common valency K, whose first eigenmatrix has the form

1 k17
P= d
g P
for some square circulant matrix P’ of size d, where the columns of P’ are

labeled by A1, As,..., Aqin this order. Let G = (w) be a cyclic group of
order d with identity 1. Then,

0 T
Mg = :
7 (1V Zid=l a)l_lAi)

is a BGW matrix with parameters (v + 1,v, (v — 1)/d) over G.
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Divisible design graph BGW matrices from pseudo-cyclic association schemes

Key property

We call P’ the principal part of P. Assume that P’ is circulant. Then,

Zd:A'A- — (k=2DJy+ (v=K)I, ift=0,
ST ke - 1) > 1,

where i + t takes the value in {1, 2, ..., d} computed modulo d.

The principal parts P’ of the following classes of ASs are circulant *.
@ 2 or 3-class pseudo-cyclic ASs
@ Cyclotomic schemes

@ Strongly regular decompositions of Latin or negative Latin square type

4M. Muzychuk, 1. Ponomarenko, On pseudocyclic association schemes, Ars Math.
Contemp. 5 (2012) 1-25.
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DD graphs from pseudo-cyclic association schemes

= (X, {A} 0) a symmetric pseudo-cyclic AS s.t. P’ is circulant
C the circulant matrix of order d with the first row 0, 1,0,0,...,0)
R: the back diagonal matrix of order d
Define fort = 0,1,...,d - 1, the (0, 1)-matrix Bo to be

Bo. Ct Oddv
Odvd ct ®Ily

Furthermore, define for t = 0, 1,...,d — 1, the (0, 1)-matrix By, to be

Br, Oqg Ct®1\7
C'®1, zd C'R®A|+t

Theorem 1 (M.-Suda)

{Bi,t|i=0,1,0<t <d- 1)} forms a(2d — 1)-class non-commutative AS.
In particular, B1t, 0 < t < d — 1, are DD graphs with parameters
(d(v + 1), v, 0, K).

Denote the resulting AS by D 4 for the assumed AS A.
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Example (Bo,'s in the d = 4 case)

Letd = 4. Then, Bit, i = 0,1, t =0,1,2,3, are given as follows.

10 0 0 01 00
01 00 0 010
0 01 0 Osav 0 00 1 Oaay
BOO=0001 BOl=1000
’ L. O O O | o O O I,V
Ons | v O 0O o, b O, O 0O
: o O |y vt o IL O O
o, O, O, I, o O I O
0 010 0 0 0 1
0 0 0 1 10 0 0
10 00 Osav 01 00 Osay
802:0100 803:0010
’ o O I, O |’ o Iv O O
Oua o O O I, Ou o O I, O
’ I, O, O, Oy v o O O |y
o I, O O v, O, O, O
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Example (By's in the d = 4 case)

v Oy o7 0f oy Ly o/ 0

04 % Noo O 04 % 4 No

Xy NN U

BLO = OV OV 0V 1V . Bl 1= 1V 0V OV OV
L, O O O | A3 Ay A A4 ’ O O O 1| A A3 A2 A

O 1, O O | A2 A1 Ay Az L, 00 O O | A3 A2 AL A

O O L, O | AL Ay A3 A 0 1y O O | A2 A1 Ay A3

O O O 1, | Ay A3 A A O O L, O | AL Ay A3 A

of o 1 o of o o 1

o LT o E AL

Vv V. V. V. V. V.

. of 1t of of |, _ of of 1 of
PII0 0 L O [ AL Ar As A P PTIT00 L 0 O A2 Al As Ag
O O O 1, | Ay A3 A A O O 1, O | AL Ay A3 A

L, O O O | A3 A AL A4 0 O O L, | A Az A A

O 1, O O | A2 A1 Ay Az L, 00 O O | A3 A2 A A
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Normalized BGW matrices = Association schemes?

Let A = (X, {Ai}id—o) be a d-class pseudo-cyclic symmetric AS s.t. the
principal part of its first eigenmatrix is circulant. Recall that

0 T
Mo = (1v =¢, wi-lAi)
is a BGW matrix with parameters (v + 1,v, (v — 1)/d) over G = (w).

Fora e X, let M® be the BGW matrix obtained by re-normalizing M 4 so
that its ath row and ath column have only the identity of G or 0. Then,
removing the ath row and ath column, we have a symmetric matrix of order
v of the form Zid=1 wi‘lAi(a) for some (0, 1)-matrices Ai(a), i=12...,d

Does A® = {Ai@ li=12,...,d}U{l,)forman AS?
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Isomorphism Isomorphism between non-commutative association schemes

M 4 is a BGW matrix with parameters (8, 7, 2) over G = (w) obtained from
the 3-class cyclotomic scheme A = (F7, {Ai}?_o). Leta= 0 € [F,.

0 1 1 1 1 1 1 1
EL) g‘) i g g g 1 0 1 0o W? W w 1
5 1.0 1 2 3 1 1 0 1 0 ? ? w
2 2
ibA=l3 2 1 01 2 doamMa=|t ¢ P 0 1 e oo
i=1,2,3 3 3 2 1 0 1 1w @ 1 0 1 o o
’ > 33 2 1 0 1 o? o 1 0 1 w
1 o o o w 1 0 1

1233 21 y Y
1 1 0w W w w 1 0

U

0 1 1 «? o o o 1
(1) é g g i g 1 0 1 1 1 1 1 1
330 1 2 1 1 1 0 o o 1 ©w
Mi-A®=12 3 1.0 3 2 1em?= @ 1?0 1w 1w
LR i 5 1 2 3 0 1 A o 1 o 1 0 o w 1
=12 321 2 1 0 o 1 1 o & 0 1 W?
1 2 2 1 3 3 W 1l w 1 w 1 0 «?
1 1 o o 1 w? w? o0
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Isomorphism between new non-commutative ASs

We call that two ASs (X, {A}d )and (X, {A’}d )are isomorphic if
{(PAPT|0<i<d= {A’ | O < i < d} for some permutation matrix P.

Theorem 2 (M.-Suda)
Let A1 and Az be two d-class symmetric pseudo-cyclic ASs of order v s.t.
the principal parts of their first eigenmatrices are circulant. If D4, and
D4, are isomorphic, Az and A, are isomorphic or there exists a € X s.t.
ﬂ(la) is an AS isomorphic to Ay.

A@ = {Ai(a)li =1,2,...,d} U{ly
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The d = 2 case
Let Ai(a) ;= {x € X]|Aj(x,a) = 1} fora e X.

When d = 2, Ai(a), i = 1,2, are given as follows (by suitable permutations
of rows and columns):

0 17 or 0 or 1T
A7~ Agra Aguz|s A ~ |0k A A
Ok Azp1 Arpp e A1 Agpp
while Aj, i = 1, 2, have the forms
T T T T
0 1k Ok 0 Ok lk
Al ~ |1 Ayrnr Agaz|s A2~ |0k Azrr Azuz|s
Ok Ap1 Arpp e Agpr Agpp2

where Ajst denote the submatrix of A;j obtained by restricting its rows to
As(a) and columns to A¢(a).
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Godsil-McKay switching

Proposition (Godsil-McKay switching)

Let I be a graph. Assume that V(I') has a subset Sinducing a regular
subgraph of I, and that each vertex in T = V(I') \ Shas 0, |S]/2 or |]
neighbors in S.

For each x € T having |S]/2 neighbors in S, delete the corresponding |S]/2
edges and join X instead to the |§/2 other vertices in S.

Then, the resulting graph is cospectral to I'.

IN(x)[=0,1S1/2 or|S]

ISI/2

IS1/2
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The d = 2 case

Recall that Aj(a) := {x € X| Ai(x,a) = 1} for a € X.

Remark

When d = 2, since each I; = (X, Aj), i = 1,2, is a conference graph,
S = X\ (Ai(a) U {a}) satisfies that |S] = (v — 1)/2 and each vertex in
T = Ai(a) U {a} has 0 or |§]/2 neighbors in Sin T.

By applying Godsil-McKay switching to Sin I';, we have a cospectral
graph, that is, the graph having Ai(a) as its adjacency matrix.

Hence, A®@ = {A(la), A(Za), Iy} forms a 2-class AS having the same first
eigenmatrix with A = (X, {Ai}iz—o)'
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Cyclotomic schemes

Theorem 3 (M.-Suda)

Let A = (Fg, {Ai}id=0) be a d-class symmetric cyclotomic AS. Then, for any

aeFq A® = {Ai(a) li=1,2...,d}U{ly} forms a d-class symmetric
pseudo-cyclic AS having the same intersection numbers with ‘A.

The problem is reduced to computing

d-1
Z |{X €eFqIxeCin(Cjyn + ) N (Cjsi + d)}|
j=0

for some ¢, d € Fy.
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Isomorphism Transformation of pseudo-cyclic association schemes

Problems

Find a class of d-class pseudo-cyclic AS A such that
A = {Ai(a) li=1,2,...,d} U {l,} are again pseudo-cyclic ASs for d > 2.

Determine whether a symmetric cyclotomic AS A is isomorphic to
A@ = {Ai(a)|i =1,2,...,d}u{l,}, ae X.

How about the case when A is nonsymmetric?
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Problems

Find a class of d-class pseudo-cyclic AS A such that
A = {Ai(a) li=1,2,...,d} U {l,} are again pseudo-cyclic ASs for d > 2.

Determine whether a symmetric cyclotomic AS A is isomorphic to
A@ = {Ai(a)|i =1,2,...,d}u{l,}, ae X.

How about the case when A is nonsymmetric?

Thank you very much for your attention!
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