On Alltop functions, p-ary Alltop functions and almost Hadamard matrices

Ferruh Özbudak

Sabanci University - Faculty of Engineering and Natural Sciences (Joint work with Fuad Hamidli and Vladimir N. Potapov)

> Hadamard 2025, 26-30, May 2025 Universidad de Sevilla May 29, 2025

 \mathbb{F}_q is a finite field, where $q = p^n$, p is odd prime. $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$.

A function F is called an Alltop function over \mathbb{F}_q if, for any $a \in \mathbb{F}_q^*$, the derivative

$$D_aF(x)=F(x+a)-F(x)$$

is a planar function. Equivalently, for any $a, b \in \mathbb{F}_q^*$, the expression

$$D_b D_a F(x) = F(x + a + b) - F(x + a) - F(x + b) + F(x)$$

is a permutation function. This definition forces p > 3. The typical Alltop function is x^3 .

Definition

A function $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ has a unique representation (called the univariate algebraic normal form) as a univariate polynomial over \mathbb{F}_{p^n} of degree at most $p^n - 1$. Hence we can assume that

$$F(x) = \sum_{i=0}^{p^n-1} c_i x^i,$$

where $c_i \in \mathbb{F}_{p^n}$ are uniquely determined by F. Any integer $d \in \{0, \ldots, p^n - 1\}$ can be uniquely written in base p as $d = \sum_{j=0}^{n-1} b_j p^j$ with $b_j \in \{0, \ldots, p-1\}$. Defining $w_p(d) = \sum_{j=0}^{n-1} b_j$, the algebraic degree of a nonzero function $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is defined and denoted as

$$d^{o}(F) = \max\{w_{p}(i) : i \in \{0, \dots, p^{n} - 1\}, c_{i} \neq 0\},\$$

where $F(x) = \sum_{i=0}^{p^n-1} c_i x^i$ is the univariate representation of F. The algebraic degree of the zero function is 0 by convention.

Assume that p is a prime, $s \ge 1$ and $q = p^s$. For $n \ge 2$, we say that $F : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ is q-affine if its algebraic normal form is in the form $F(x) = \sum_{i=0}^{p^n-1} c_i x^i$, with

$$x^i \in \{1, x, x^q, x^{q^2}, \dots, x^{q^{n-1}}\}$$
 for each $c_i
eq 0$.

For $n \ge 2$, we say that $F : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ is (at most) *q*-quadratic if its algebraic normal form is in the form $F(x) = \sum_{i=0}^{p^n-1} c_i x^i$, with

 $x^i \in \{1, x, x^q, x^{q^2}, \dots, x^{q^{n-1}}\} \cup \{x^2, x^{1+q}, \dots, x^{1+q^{n-2}}, x^{2q}, x^{q+q^2}, \dots\}$ for each $c_i \neq 0$.

Similarly we define (at most) q-cubic.

Any function $f:\mathbb{F}_{p^n} o \mathbb{F}_p$ has a representation of the form

 $f(x) = \operatorname{Tr}(F(x)),$

where F is a map $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and $\operatorname{Tr} : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is the trace map. Here F is not unique but algebraic degree of F is invariant, that we call the algebraic degree of f.

.

Let F and G be functions on \mathbb{F}_{p^n} . The functions F and G are called extended affine equivalent (EA-equivalent) if there exist an affine map $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and affine invertible maps $L_1, L_2 : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ such that

$$G + \phi = L_1 \circ F \circ L_2$$

Let F and G be functions on \mathbb{F}_{p^n} . The functions F and G are said to be extended quadratic equivalent (EQA) if there exist a (at most) quadratic map $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and affine invertible maps $L_1, L_2 : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ such that

 $G + \phi = L_1 \circ F \circ L_2$

Remark

It is straightforward to see that the Alltop property is preserved under extended quadratic equivalency. In addition, for any homogeneous cubic functions F and G on \mathbb{F}_{p^n} , extended affine equivalency (EA) is the same as extended quadratic equivalency (EQA).

Theorem (Hall et al. 2013)

Let $p \ge 5$ be an odd prime, and *n* is an integer such that 3 does not divide $p^n + 1$. Then $f(x) = x^{p^n+2}$ is an Alltop polynomial on $\mathbb{F}_{p^{2n}}$.

Theorem (Hall et al. 2013)

Let $p \ge 5$ be an odd prime, and n is an integer such that 3 does not divide $p^n + 1$. Then the Alltop functions x^3 and $x^{p^n+2} \mathbb{F}_{p^{2n}}$ are not EA.

Over the field \mathbb{F}_{q^2} , the set of all cubic *q*-monomials is as follows:

- A_1) x^3
- A_2) x^{q+2}
- A_3) $x^{2q+1} = (x^{q+2})^q$
- A_4) $x^{3q} = (x^3)^q$

The pairs A_1) and A_4), as well as A_2) and A_3), are equivalent under extended affine (EA) equivalence, as they are *q*-th powers of each other.

Let $u \in \mathbb{F}_{q^2}^*$. The set of all cubic *q*-binomials over \mathbb{F}_{q^2} takes the following forms:

- B_1) $x^3 + ux^{2q+1}$
- B_2) $x^3 + ux^{q+2}$
- B_3) $x^3 + ux^{3q}$
- B_4) $x^{q+2} + ux^{2q+1}$
- B_5) $x^{q+2} + ux^{3q}$
- B_6) $x^{2q+1} + ux^{3q}$

Pairs B_1) and B_5) are EA-equivalent, as are B_2) and B_6). After eliminating equivalent functions, we identify B_1 , B_2 , B_3), and B_4) as the only classes needed to be studied wlog upto EA over \mathbb{F}_{q^2} .

Cubic Alltop *q*-Monomials and *q*-Binomials over \mathbb{F}_{q^2}

B₃) is easy. As x³ + ux^{3q} = (x + ux^q) ∘ x³ and x + ux^q is a permutation iff u is not a q - 1 power: A function in B₃) is Alltop iff u is not a q - 1 power in F^{*}_{q²}. Moreover they all are EA to x³ if Alltop.

B₄) is similar. As x^{q+2} + ux^{2q+1} = (x + ux^q) ∘ x^{q+2} and x + ux^q is a permutation iff u is not a q − 1 power: A function in B4) is Alltop iff u is not a q − 1 power in F^{*}_{q²}. Moreover they all are EA to x^{q+2} if Alltop.

The class of B1) is quite interesting. Different from B2) and B4) above, there are u_1 and u_2 in this class, one is EA to x^3 , while the other one EA to x^{q+2} . Moreover we classify all of them in the following.

Theorem

Let $p \ge 5$ be an odd prime, and n is an integer. Put $q = p^n$ and let $u \in \mathbb{F}_{q^2}^*$. Let $F_u(x) = x^3 + ux^{2q+1}$. We have the followings:

- F_u is EA to x^3 if and only if $\frac{u}{3} \in \{\theta^2 : \theta^{q+1} = -1\} \subseteq \mathbb{F}_{q^2}^*$.
- F_u is EA to x^{q+2} if and only if $u \in \{\theta^{q-1} : \theta^{q+1} = -1\} \subseteq \mathbb{F}_{a^2}^*$.

Theorem

Except for x^3 and its equivalent class under EA, there are no Alltop cubic *q*-monomials in \mathbb{F}_{q^3} .

Based on our computations, except for $x^3 + cx^{3q}$ (which is Alltop if and only if c is not a (q-1)-st power, since $f(x) = (x + cx^q) \circ x^3$, the other cubic q-binomials are not Alltop when q = 5 and q = 7.

Definition *p*-ary Alltop

Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ where p is an odd prime and $n \ge 1$ is an integer. Then f is called a *p*-ary bent function if $D_a f(x) = f(x+a) - f(x)$ is balanced for any $a \in \mathbb{F}_{p^n}^*$. We define fas a *p*-ary Alltop function if the difference function $D_a f(x) = f(x+a) - f(x)$ is *p*-ary bent for any $a \in \mathbb{F}_{p^n}^*$. In other words, for any $a, b \in \mathbb{F}_{p^n}^*$, the second-order difference function $D_b D_a f(x)$ is balanced.

Theorem

Let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be arbitrary function and let $f_\alpha : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be a *p*-ary function defined as

$$f_{\alpha}(x) = \mathsf{Tr}(\alpha F(x))$$

for any $\alpha \in \mathbb{F}_{p^n}^*$, where Tr is the usual trace function from \mathbb{F}_{p^n} to \mathbb{F}_p . Then F is Alltop if and only if f_{α} is p-ary Alltop for any $\alpha \in \mathbb{F}_{p^n}^*$. Let f denote a p-ary function mapping from \mathbb{F}_{p^n} to \mathbb{F}_p . The Walsh transform of f is defined as

$$W_f(\alpha) = \sum_{x \in \mathbb{F}_{p^n}} \epsilon_p^{f(x) - \operatorname{Tr}(\alpha x)}.$$

Definition (Mesnager 2014)

Let f denote a p-ary function mapping from \mathbb{F}_{p^n} to \mathbb{F}_p . For any nonnegative integer i, the 2i-th moment of the Walsh transform of f is defined as

$$S_i(f) = \sum_{\alpha \in \mathbb{F}_{p^n}} |W_f(\alpha)|^{2i},$$

with the convention that $S_0(f) = p^n$ when i = 0.

Observation

Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be any *p*-ary function. Then *f* is a *p*-ary Alltop function if and only if

$$\sum_{x\in\mathbb{F}_{p^n}}\epsilon_p^{D_bD_af(x)}=0,$$

for all $a, b \in \mathbb{F}_{p^n}^*$, where ϵ_p represents a p-th root of unity.

Theorem

If $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is a *p*-ary Alltop, then

$$S_2(f) = p^{2n}(2p^n - 1).$$

q is a power of 3.

Theorem

Let $f : \mathbb{F}_{q^2} \to \mathbb{F}_3$ be an arbitrary function whose (geometric) q-ary degree is 3. Then f is never 3-ary Alltop. q is a power of 3.

Recall that there is no Alltop in characteristic 3. Hence there is no 3-ary Alltop as a component of an Alltop function.

Also the previous slide shows nonexistence 3-ary Alltop functions in the class of *q*-cubic functions $f : \mathbb{F}_{q^2} \to \mathbb{F}_3$.

The next theorem gives a new infinite class and also its full characterization.

Theorem

Let $f : \mathbb{F}_{q^3} \to \mathbb{F}_3$ be the infinite class of *p*-ary functions of *q*-ary degree is 3 given by $f(x) = \operatorname{Tr}_{q^3/3}(Ax^{q^2+q+1})$, where $A = \mathbb{F}_{q^3}^*$. Then *f* is 3-ary Alltop if and only if $\operatorname{Tr}_{q^3/q}(A) \neq 0$.

q is a power of p, p > 3.

Recall that many restrictions of p-ary bent functions disappear if p > 2.

Similarly, studying *p*-ary Alltop functions for p > 3 seems less restrictive.

This is useful, for example, to applications to Kerdock codes in the following slides.

A Connection Certain Hadamard Matrices

A Hadamard matrix is called *p*-ary Butson type matrix if it consists of elements ϵ^{x} , $x \in \mathbb{F}_{p}$. Here ϵ is a primitive *p*-th root of 1 in \mathbb{C} .

We only consider Butson type Hadamard matrices here.

Definition (Shlichta 1979)

A k-dimensional matrix $H(x_1, \ldots, x_k)$ of size $N \times \cdots \times N$ is called a proper Hadamard matrix if for any $i, j \in \{1, \ldots, k\}$ the matrix $\mathcal{H}_{a_1, \ldots, a_k}(y, z) = H(a_1, \ldots, y, \ldots, z, \ldots, a_k)$ is the Hadamard matrix for every fixed values $a_1, \ldots, a_m, \ldots, a_k \in N$, where $m \neq i, j$.

Definition (Hammer and Seberry 1981)

A k-dimensional matrix $H(x_1, \ldots, x_k)$ of size $N \times \cdots \times N$ is called an almost Hadamard matrix if for any $i, j \in \{1, \ldots, k\}$ the matrix $\mathcal{H}_{a_1, \ldots, a_k}(y, z) = H(a_1, \ldots, y, \ldots, z, \ldots, a_k)$ is the Hadamard matrix or all 1s matrix for every fixed values $a_1, \ldots, a_m, \ldots, a_k \in N$, where $m \neq i, j$.

Define

$$H(x, y, z) = e^{f(x+y+z) - f(x+y) - f(y+z) - f(z+x) + f(x) + f(y) + f(z)},$$

where f is a p-ary function and f(0) = 0.

Theorem

f is a p-ary Alltop function if and only if H is a p-ary almost Butson type Hadamard matrix with only one non Hadamard submatrix in every direction.

Sketch of the proof

Let $z_1 \neq z_2$ and consider

$$f(x + y + z_1) -f(x + y) - f(x + z_1) - f(y + z_1) f(x) + f(y) + f(z_1)$$

$$-f(x + y + z_2) +f(x + y) + f(x + z_2) + f(y + z_2) -f(x) - f(y) - f(z_2)$$

If $y \neq 0$, then observe that this expression, upto a multiplication by a constant on the unit circle depending on y, is equal to

$$D_y D_{z_1-z_2} f(x+z_2).$$

Definition

A set of bent functions $K \subseteq \{f : \mathbb{F}_{p^n} \to \mathbb{F}_p : f \text{ bent}\}$ is called a Kerdock set if for any $f_1, f_2 \in K$ with $f_1 \neq f_2$, the difference $f_1 - f_2$ is a bent function.

Theorem

If f is a p-ary Alltop function then $\mathcal{K}_f = \{D_a f : a \in \mathbb{F}_{p^n}^*\}$ is a Kerdock set.

Consider a set

$$\mathcal{D}_{\mathcal{K}} = \{\mathcal{K} + \ell_{b,c} : b \in \mathbb{F}_p^n, c \in \mathbb{F}_p\},$$

where K is a Kerdock set and $\ell_{b,c}(x) = (x, b) + c$ is an affine function.

Theorem

 \mathcal{D}_{K} is a *p*-ary Kerdock codes with parameters $(p^{n}, p^{2n+1}, (p-1)(p^{n-1}-p^{\frac{n}{2}-1})$ for even *n* and $(p^{n}, p^{2n+1}, (p-1)p^{n-1}-p^{\frac{n-1}{2}})$ for odd *n*.

This theorem improves a result of van Ash and van Tilborg 2001.

A Natural Generalization: generalized Alltop functions of degree s

 \mathbb{F}_q is a finite field, where $q = p^n$, p is a prime. Let $s \ge 2$ be an integer. $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. A function f is called a generalized Alltop function of degree s over \mathbb{F}_q if, for any $a_1, \ldots, a_s \in \mathbb{F}_q^*$, the derived map

 $D_{a_1}D_{a_1}\cdots D_{a_s}f(x)$

is a permutation function on \mathbb{F}_{p^n} .

If s = 2, then they correspond to planar functions. The canonical example is x^2 for p > 2. If s = 3, then they correspond to Alltop functions. The canonical example is x^3 for p > 3. If s = 5, then the canonical example is x^5 for p > 5.

Note that s is not necessarily a prime. For example, if s = 4, then x^4 is generalized Alltop function of degree 4 if p > 4.

Another Natural Generalization: generalized p-ary Alltop functions of degree s

 \mathbb{F}_q is a finite field, where $q = p^n$, p is a prime. Let $s \ge 2$ be an integer. A p-ary function

 $f : \mathbb{F}_q \to \mathbb{F}_p$ is called a generalized *p*-ary Alltop function of degree *s* over \mathbb{F}_q if, for any $a_1, \ldots, a_s \in \mathbb{F}_q^*$, the derived map

$$D_{a_1}D_{a_1}\cdots D_{a_s}f(x)$$

is a balanced function from \mathbb{F}_{p^n} to \mathbb{F}_p .

If s = 2, then they correspond to *p*-ary bent functions.

If s = 3, then they correspond to *p*-ary Alltop functions.

We have the similar results for the generalized p-ary Alltop function of degree s in some cases. But the problem becomes harder as s increases in general.

It seems there are generic constructions of improper higher dimensional almost Hadamard matrices using generalized p-ary Alltop of functions of degree s.

Thank you very much for your attention. Muchas gracias por su atención.