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What is a projection cube?

Definition
A (v , k, λ) projection n-cube is a matrix

C : {1, . . . , v}n → F

with {0, 1}-entries such that all projections Πxy (C), 1 ≤ x < y ≤ n are
symmetric (v , k, λ) designs. The set of all such matrices will be denoted
Pn(v , k, λ).

For 1 ≤ x < y ≤ n, the projection Πxy (C) is defined as the 2-dimensional
matrix with (ix , iy )-entry ∑

1≤i1,...,îx ,...,îy ,...,in≤v

C(i1, . . . , in).

The sum is taken over all n-tuples (i1, . . . , in) ∈ {1, . . . , v}n with fixed
coordinates ix and iy .
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Example: (7, 3, 1) projection 3-cube
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Proposition
The number of incidences of C ∈ Pn(v , k, λ) is vk.
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Practical representation

We can interpret C : {1, . . . , v}n → {0, 1} as a characteristic function
and identify it with the set of n-tuples

C = {(i1, . . . , in) ∈ {1, . . . , v}n | C(i1, . . . , in) = 1}

(1, 1, 1) (3, 4, 5) (5, 1, 4)
(1, 2, 3) (3, 6, 2) (6, 6, 6)
(1, 4, 7) (4, 4, 4) (6, 7, 1)
(2, 2, 2) (4, 5, 6) (6, 2, 5)
(2, 3, 4) (4, 7, 3) (7, 7, 7)
(2, 5, 1) (5, 5, 5) (7, 1, 2)
(3, 3, 3) (5, 6, 7) (7, 3, 6)
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Practical representation

Proposition
Let S ⊆ {1, . . . , v}n be a subset of cardinality vk. There exists a
C ∈ Pn(v , k, λ) such that S = C if and only if the following statements
are true for all 1 ≤ x < y ≤ n:

1 for all i ∈ {1, . . . , v}, there are exactly k elements j ∈ {1, . . . , v} such
that (i , j) ∈ Πxy (S),

2 for all j ∈ {1, . . . , v}, there are exactly k elements i ∈ {1, . . . , v} such
that (i , j) ∈ Πxy (S),

3 for all i , i ′ ∈ {1, . . . , v}, i ̸= i ′, there are exactly λ elements
j ∈ {1, . . . , v} such that (i , j) ∈ Πxy (S) and (i ′, j) ∈ Πxy (S).

Corollary
If C is a (v , k, λ) projection n-cube, then C is an orthogonal array of
size vk, degree n, order v , strength 1, and index k, i.e. an OA(vk, n, v , 1).
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Basic properties

Theorem
If a (v , k, λ) projection n-cube with k ≥ 2 exists, then

n ≤ v(v + 1)
2 .

Better bound obtained from coding theory:

n ≤ vk − 1
k − 1 .

Thanks to the anonymous referee!
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Complete classification of Pn(v , k , λ) cubes up to
equivalence

. . . by computer calculations using orthogonal array representation

⇝ extending incidence pairs to triplets and increasing the dimension
⇝ eliminating equivalent copies

n
(v , k, λ) 2 3 4 5 6 7 8 9 10
(3, 2, 1) 1 2 1 1 0 0 0 0 0
(7, 3, 1) 1 13 20 4 3 2 0 0 0
(7, 4, 2) 1 877 884 74 19 9 6 5 0

ν(3, 2, 1) = 5, ν(7, 3, 1) = 7, ν(7, 4, 2) = 9

(ν(v , k, λ) = largest integer n such that (v , k, λ) projection n-cubes exist)
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Higher-dimensional difference sets

A (v , k, λ) difference set in G is a subset D ⊆ G of size k such that every
element g ∈ G \ {0} can be written as g = d1 − d2 for exaclty λ choices of
d1, d2 ∈ D.

Definition
An n-dimensional (v , k, λ) difference set in G is a set of n-tuples D ⊆ Gn

of size k such that {dx − dy | d ∈ D} ⊆ G are (v , k, λ) difference sets for
all 1 ≤ x < y ≤ n.

Proposition
If D is an n-dimensional (v , k, λ) difference set in G, the development
dev D = {(d1 + g , . . . , dn + g) | g ∈ G , d ∈ D} is the representation
C ⊆ Gn of a projection cube C ∈ Pn(v , k, λ).
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Higher-dimensional difference sets

Theorem
If an n-dimensional (v , k, λ) difference set D ⊆ Gn exists, then n ≤ v.

Theorem
Let D be an n-dimensional (v , k, λ) difference set in G. Then the
projection cube C = dev D has an autotopy group isomorphic to G acting
sharply transitively on each coordinate.

Theorem
Let C ∈ Pn(v , k, λ) be a projection cube with an autotopy group G acting
sharply transitively on each coordinate. Then there is an n-dimensional
(v , k, λ) difference set D in G such that C is equivalent with dev D.
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Constructions – Paley difference sets

For a prime power q ≡ 3 (mod 4), the squares in F∗
q constitute a

(q, (q − 1)/2, (q − 3)/4) difference set in (Fq, +), as do the non-squares.

Theorem (Higher-dimensional Paley difference sets)
If q ≡ 3 (mod 4) is a prime power, then there exists a q-dimensional
difference set with parameters (q, (q − 1)/2, (q − 3)/4) in the additive
group of Fq.

7-dimensional (7, 3, 1) difference set in Z7:

D5 = {(0, 1, 3, 2, 6, 4, 5), (0, 2, 6, 4, 5, 1, 3), (0, 4, 5, 1, 3, 2, 6)}.
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Constructions

Theorem (Higher-dimensional cyclotomic difference sets)
If q is a prime power such that the 4th powers in Fq make a
(q, (q − 1)/4, (q − 5)/16) difference set, or the 8th powers in Fq make a
(q, (q − 1)/8, (q − 9)/64) difference set, then there exists a q-dimensional
difference set with the same parameters.

Theorem (Higher-dimensional twin prime power difference sets)
If q and q + 2 are odd prime powers, then there exists a q-dimensional
difference set in G = Fq × Fq+2 with parameters (4m − 1, 2m − 1, m − 1)
for m = (q + 1)2/4.
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(16, 6, 2) projection 3-cubes
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(16, 6, 2) projection 3-cubes

Proposition
There are exactly 1076 inequivalent P3(16, 6, 2)-cubes with an autotopy of
order 8 acting in two cycles on each coordinate.

⇝ 152 of them have three non-isomorphic projections
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(16, 6, 2) projection 3-cubes

Lucija Relić (University of Zagreb) Projection cubes of symmetric designs May 26, 2025 15 / 16



The End

Thank you for your attention!
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