Projection cubes of symmetric designs

Lucija Relić

University of Zagreb, Croatia

(joint work with Vedran Krčadinac and Mario Osvin Pavčević)

8th Workshop on Design Theory, Hadamard Matrices and Applications May 26-30, 2025, Sevilla, Spain

What is a projection cube?

Definition

A (v, k, λ) projection n-cube is a matrix

$$C: \{1, \ldots, v\}^n \to \mathbb{F}$$

with $\{0,1\}$ -entries such that all projections $\Pi_{xy}(C)$, $1 \le x < y \le n$ are symmetric (v, k, λ) designs. The set of all such matrices will be denoted $\mathcal{P}^n(v, k, \lambda)$.

Definition

A (v, k, λ) projection n-cube is a matrix

$$C: \{1,\ldots,v\}^n \to \mathbb{F}$$

with $\{0,1\}$ -entries such that all projections $\Pi_{xy}(C)$, $1 \le x < y \le n$ are symmetric (v, k, λ) designs. The set of all such matrices will be denoted $\mathcal{P}^n(v, k, \lambda)$.

For $1 \le x < y \le n$, the projection $\prod_{xy}(C)$ is defined as the 2-dimensional matrix with (i_x, i_y) -entry

$$\sum_{1\leq i_1,\ldots,\widehat{i_x},\ldots,\widehat{i_y},\ldots,i_n\leq v} C(i_1,\ldots,i_n).$$

The sum is taken over all *n*-tuples $(i_1, \ldots, i_n) \in \{1, \ldots, v\}^n$ with fixed coordinates i_x and i_y .

Lucija Relić (University of Zagreb)

Lucija Relić (University of Zagreb) Projection cubes of symmetric designs

V. Krčadinac, L. Relić, *Projection cubes of symmetric designs*, to appear in Math. Comput. Sci. https://arxiv.org/abs/2411.06936

V. Krčadinac, M. O. Pavčević, *On higher-dimensional symmetric designs*, preprint. https://arxiv.org/abs/2412.09067

V. Krčadinac, L. Relić, *Projection cubes of symmetric designs*, to appear in Math. Comput. Sci. https://arxiv.org/abs/2411.06936

V. Krčadinac, M. O. Pavčević, *On higher-dimensional symmetric designs*, preprint. https://arxiv.org/abs/2412.09067

Persistence of Vision Raytracer, Version 3.7 (2013). http://www.povray.org/ V. Krčadinac, L. Relić, *Projection cubes of symmetric designs*, to appear in Math. Comput. Sci. https://arxiv.org/abs/2411.06936

V. Krčadinac, M. O. Pavčević, *On higher-dimensional symmetric designs*, preprint. https://arxiv.org/abs/2412.09067

Persistence of Vision Raytracer, Version 3.7 (2013). http://www.povray.org/

Proposition

The number of incidences of $C \in \mathcal{P}^n(v, k, \lambda)$ is vk.

Practical representation

We can interpret $C: \{1, \ldots, \nu\}^n \to \{0, 1\}$ as a characteristic function and identify it with the set of *n*-tuples

$$\overline{C} = \{(i_1,\ldots,i_n) \in \{1,\ldots,\nu\}^n \mid C(i_1,\ldots,i_n) = 1\}$$

Practical representation

We can interpret $C:\{1,\ldots,\nu\}^n\to\{0,1\}$ as a characteristic function and identify it with the set of n-tuples

$$\overline{C} = \{(i_1,\ldots,i_n) \in \{1,\ldots,\nu\}^n \mid C(i_1,\ldots,i_n) = 1\}$$

(1,1,1)	(3, 4, 5)	(5, 1, 4)
(1, 2, 3)	(3, 6, 2)	(6,6,6)
(1, 4, 7)	(4, 4, 4)	(6, 7, 1)
(2, 2, 2)	(4, 5, 6)	(6, 2, 5)
(2, 3, 4)	(4,7,3)	(7, 7, 7)
(2, 5, 1)	(5, 5, 5)	(7, 1, 2)
(3, 3, 3)	(5, 6, 7)	(7, 3, 6)

Proposition

Let $S \subseteq \{1, ..., v\}^n$ be a subset of cardinality vk. There exists a $C \in \mathcal{P}^n(v, k, \lambda)$ such that $S = \overline{C}$ if and only if the following statements are true for all $1 \le x < y \le n$:

- for all $i \in \{1, ..., v\}$, there are exactly k elements $j \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$,
- ② for all $j \in \{1, ..., v\}$, there are exactly k elements $i \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$,
- for all $i, i' \in \{1, ..., v\}$, $i \neq i'$, there are exactly λ elements $j \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$ and $(i', j) \in \prod_{xy}(S)$.

Proposition

Let $S \subseteq \{1, ..., v\}^n$ be a subset of cardinality vk. There exists a $C \in \mathcal{P}^n(v, k, \lambda)$ such that $S = \overline{C}$ if and only if the following statements are true for all $1 \le x < y \le n$:

- for all $i \in \{1, ..., v\}$, there are exactly k elements $j \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$,
- ② for all $j \in \{1, ..., v\}$, there are exactly k elements $i \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$,
- for all $i, i' \in \{1, ..., v\}$, $i \neq i'$, there are exactly λ elements $j \in \{1, ..., v\}$ such that $(i, j) \in \prod_{xy}(S)$ and $(i', j) \in \prod_{xy}(S)$.

Corollary

If C is a (v, k, λ) projection n-cube, then \overline{C} is an orthogonal array of size vk, degree n, order v, strength 1, and index k, i.e. an OA(vk, n, v, 1).

Theorem

If a (v, k, λ) projection n-cube with $k \ge 2$ exists, then

$$n\leq \frac{v(v+1)}{2}.$$

Theorem

If a (v, k, λ) projection n-cube with $k \ge 2$ exists, then

Better bound obtained from coding theory:

$$n\leq rac{vk-1}{k-1}.$$

Thanks to the anonymous referee!

... by computer calculations using orthogonal array representation

... by computer calculations using orthogonal array representation ~ extending incidence pairs to triplets and increasing the dimension

- ... by computer calculations using orthogonal array representation
 - \rightsquigarrow extending incidence pairs to triplets and increasing the dimension
 - \rightsquigarrow eliminating equivalent copies

	n								
$(\mathbf{v}, \mathbf{k}, \lambda)$	2	3	4	5	6	7	8	9	10
(3, 2, 1)	1	2	1	1	0	0	0	0	0
(7, 3, 1)	1	13	20	4	3	2	0	0	0
(7, 4, 2)	1	877	884	74	19	9	6	5	0

- ... by computer calculations using orthogonal array representation
 - \rightsquigarrow extending incidence pairs to triplets and increasing the dimension
 - \rightsquigarrow eliminating equivalent copies

	n								
(v, k, λ)	2	3	4	5	6	7	8	9	10
(3, 2, 1)	1	2	1	1	0	0	0	0	0
(7, 3, 1)	1	13	20	4	3	2	0	0	0
(7,4,2)	1	877	884	74	19	9	6	5	0

 $\nu(3,2,1) = 5, \quad \nu(7,3,1) = 7, \quad \nu(7,4,2) = 9$

 $(\nu(v, k, \lambda) =$ largest integer *n* such that (v, k, λ) projection *n*-cubes exist)

A (v, k, λ) difference set in G is a subset $D \subseteq G$ of size k such that every element $g \in G \setminus \{0\}$ can be written as $g = d_1 - d_2$ for exactly λ choices of $d_1, d_2 \in D$.

A (v, k, λ) difference set in G is a subset $D \subseteq G$ of size k such that every element $g \in G \setminus \{0\}$ can be written as $g = d_1 - d_2$ for exactly λ choices of $d_1, d_2 \in D$.

Definition

An *n*-dimensional (v, k, λ) difference set in G is a set of *n*-tuples $D \subseteq G^n$ of size k such that $\{d_x - d_y \mid d \in D\} \subseteq G$ are (v, k, λ) difference sets for all $1 \leq x < y \leq n$.

A (v, k, λ) difference set in G is a subset $D \subseteq G$ of size k such that every element $g \in G \setminus \{0\}$ can be written as $g = d_1 - d_2$ for exactly λ choices of $d_1, d_2 \in D$.

Definition

An *n*-dimensional (v, k, λ) difference set in G is a set of *n*-tuples $D \subseteq G^n$ of size k such that $\{d_x - d_y \mid d \in D\} \subseteq G$ are (v, k, λ) difference sets for all $1 \leq x < y \leq n$.

Proposition

If D is an n-dimensional (v, k, λ) difference set in G, the development dev $D = \{(d_1 + g, ..., d_n + g) \mid g \in G, d \in D\}$ is the representation $\overline{C} \subseteq G^n$ of a projection cube $C \in \mathcal{P}^n(v, k, \lambda)$.

Theorem

If an n-dimensional (v, k, λ) difference set $D \subseteq G^n$ exists, then $n \leq v$.

Theorem

If an n-dimensional (v, k, λ) difference set $D \subseteq G^n$ exists, then $n \leq v$.

Theorem

Let D be an n-dimensional (v, k, λ) difference set in G. Then the projection cube $\overline{C} = \text{dev } D$ has an autotopy group isomorphic to G acting sharply transitively on each coordinate.

Theorem

Let $C \in \mathcal{P}^n(v, k, \lambda)$ be a projection cube with an autotopy group G acting sharply transitively on each coordinate. Then there is an n-dimensional (v, k, λ) difference set D in G such that \overline{C} is equivalent with dev D.

For a prime power $q \equiv 3 \pmod{4}$, the squares in \mathbb{F}_q^* constitute a (q, (q-1)/2, (q-3)/4) difference set in $(\mathbb{F}_q, +)$, as do the non-squares.

Theorem (Higher-dimensional Paley difference sets)

If $q \equiv 3 \pmod{4}$ is a prime power, then there exists a q-dimensional difference set with parameters (q, (q-1)/2, (q-3)/4) in the additive group of \mathbb{F}_q .

7-dimensional (7, 3, 1) difference set in \mathbb{Z}_7 :

 $D_5 = \{(0,1,3,2,6,4,5), (0,2,6,4,5,1,3), (0,4,5,1,3,2,6)\}.$

Theorem (Higher-dimensional cyclotomic difference sets)

If q is a prime power such that the 4th powers in \mathbb{F}_q make a (q, (q-1)/4, (q-5)/16) difference set, or the 8th powers in \mathbb{F}_q make a (q, (q-1)/8, (q-9)/64) difference set, then there exists a q-dimensional difference set with the same parameters.

Theorem (Higher-dimensional twin prime power difference sets)

If q and q + 2 are odd prime powers, then there exists a q-dimensional difference set in $G = \mathbb{F}_q \times \mathbb{F}_{q+2}$ with parameters (4m - 1, 2m - 1, m - 1) for $m = (q + 1)^2/4$.

Lucija Relić (University of Zagreb)

Lucija Relić (University of Zagreb)

Proposition

There are exactly 1076 inequivalent $\mathcal{P}^3(16, 6, 2)$ -cubes with an autotopy of order 8 acting in two cycles on each coordinate.

 \rightsquigarrow 152 of them have three non-isomorphic projections

Lucija Relić (University of Zagreb)

Thank you for your attention!