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Motivation

Since the publication in 1994 of the famous paper

A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The Z4-linearity of Kerdock,

Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319.

the study of linear codes over rings has received a lot of attention.

Simplex and MacDonald codes over Z2s have been studied in

M.K. Gupta, M.C. Bhandari, and A.K. Lal: On some linear codes over Z2s . Designs, Codes and

Cryptography, 36, no. 3, pp. 227–244 (2005).

C. Fernández-Córdoba, C. Vela and M. Villanueva: Nonlinearity and Kernel of Z2s -Linear simplex and

MacDonald Codes. IEEE Transactions on Information Theory, 68, no. 11, pp. 7174-7183 (2021).

Our goal is to generalize and study these families of codes over Zps for an
arbitrary prime p and s ≥ 1.
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Zps -additive codes

A code over Zps of length n is a non-empty subset C of Zn
ps .

If C has group structure, then it is called a Zps -additive code. In this case, C is
a subgroup of Zn

ps , so it is isomorphic to an abelian structure

Zt1
ps × Zt2

ps−1 × · · · × Zts−1

p2
× Zts

p , and we say that C is of type (n; t1, . . . , ts).

A matrix with rows that are generators of a code is called a generator matrix.

There is a generator matrix of C (with minimum number of rows) having ti

rows of order ps−(i−1) for all i ∈ {1, . . . , s}.

Example

In Z27,

A =

 1 2 3 4 5
0 3 9 12 15
0 0 9 18 9


generates a linear code of type (5; 1, 1, 1).
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Weights for Zn
ps

Consider c = (c1, . . . , cn) ∈ Zn
ps . The Hamming weight of c is defined as

wH(c) = |{1 ≤ i ≤ n | ci ̸= 0}|.

The homogeneous weight of ci is defined as

wHom(ci ) =


0 if ci = 0,

ps−1 if ci ̸= 0 and ci ∈ ⟨ps−1⟩,
(p − 1)ps−2 otherwise,

and wHom(c) =
∑n

i=1 wHom(ci ).

Example

Consider Z9 = Z32 and c = (0, 1, 2, 3, 4).
Then, wH(c) = 4 and wHom(c) = 3 · 2 + 1 · 3 = 9.

These weights w define distance functions by taking d(x , y) = w(x − y).
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Order and valuation

We define the order of x ∈ Zn
ps , denoted by o(x), as the smallest natural

number m such that mx = 0.

We define the valuation of x ∈ Zn
ps\{0}, denoted by ν(x), as the largest

natural number k such that x = pky , where y is another nonzero element of
Zn

ps . For x = 0, we define its valuation as ν(0) = ∞.

For x ̸= 0, o(x) = ps−ν(x).

Example

For x = (0, 1) ∈ Z2
4, we have that o(x) = 4 and ν(x) = 0.

For y = (2, 2) ∈ Z2
4, we have that o(y) = 2 and ν(y) = 1.
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A Griesmer-type bound for Zps -additive codes

The minimum Hamming distance of a Zps -additive code C is

dH(C) = min{wH(c) | c ∈ C\{0}}.

Theorem

Let C be a Zps -additive code of type (n; t1, . . . , ts) and minimum Hamming
distance dH(C), and let k =

∑s
j=1 tj . Then, we have that

n ≥
k−1∑
i=0

⌈dH(C)
pi

⌉.

When this bound is met, the code C is optimal for the Griesmer-type bound.

K. Shiromoto and L. Storme, A Griesmer bound for linear codes over finite quasi-Frobenius rings. Discrete

Applied Mathematics, 128, no. 1 pp. 263-274.
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The generalized Gray map

The generalized Gray map Φs : Zps 7−→ Zps−1

p is defined as follows:

Φs(u) = (u0, . . . , us−2, us−1)Ms−1,

where [u0, u1, . . . , us−1]p is the p-ary expansion of u ∈ Zps , u =
∑s−1

i=0 uip
i with

ui ∈ {0, . . . , p − 1}, and

Ms−1 =

(
Ys−1

1

)
, (1)

where Ys−1 is the matrix of size s − 1× ps−1 over Zp such that its columns are
all the elements of Zs−1

p . We define Φs over Zn
ps component-wise.

Example

The generalized Gray map for Z8 is Φ3 : Z8 −→ Z4
2 :

M2 =

 0011
0101
1111

 0 = [000]2 7−→ 0000 4 = [001]2 7−→ 1111
1 = [100]2 7−→ 0011 5 = [101]2 7−→ 1100
2 = [010]2 7−→ 0101 6 = [011]2 7−→ 1010
3 = [110]2 7−→ 0110 7 = [111]2 7−→ 1001
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Construction of Zps -additive simplex codes: type α

Let Gα
k be the matrix consisting of all possible distinct columns.

Gα
1 =

(
0 1 2 · · · ps − 1

)
and

Gα
k =

(
0 1 2 · · · ps − 1

Gα
k−1 Gα

k−1 Gα
k−1 · · · Gα

k−1

)
.

The code generated by Gα
k , denoted by Sα

k , is called a Zps -additive simplex
code of type α with k ≥ 1 generators.

Example

Consider Z3. Then, we have that

Gα
1 = (012), Gα

2 =

(
000 111 222
012 012 012

)
.
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Construction of Zps -additive simplex codes: type β

Let Gβ
k be the matrix constructed recursively as follows:

Gβ
1 = (1) , Gβ

2 =

(
1 0 p · · · ps − p

0 1 2 . . . ps − 1 1 1 · · · 1

)
,

Gβ
k =

(
1 0 · · · ps − p

Gα
k−1 Gβ

k−1 · · · Gβ
k−1

)
.

The code generated by Gβ
k , denoted by Sβ

k , is called a Zps -additive simplex
code of type β with k ≥ 1 generators.

Example

Consider Z9. Then, we have that

Gβ
1 = (1) ,

Gβ
2 =

(
111111111 0 3 6
012345678 1 1 1

)
.

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva Weight distributions of Zps -additive simplex and MacDonald codes12 / 20



Motivation
Zps -additive codes

Zps -additive simplex and MacDonald codes
Future research

Construction of Zps -additive simplex codes
Results for Zps -additive simplex codes
Construction of Zps -additive MacDonald codes

Results for Sα
k

Theorem

Sα
k has type (psk ; k, 0, . . . , 0).

For all c ∈ Sα
k \{0}, wH(c) = psk − pν(c)ps(k−1), so

dH(S
α
k ) = (p − 1)psk−1.

For every valuation j ∈ {0, 1, . . . , s − 1}, there are pk(s−j) − pk((s−j)−1)

codewords of weight psk − pjps(k−1).

For all c ∈ Sα
k \{0}, wHom(c) = ps(k+1)−2(p − 1), so

dHom(S
α
k ) = ps(k+1)−2(p − 1).

Sα
k is not optimal for the Griesmer-type bound, for any prime p and s ≥ 1.
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Results for Sβ
k

Theorem

Sβ
k has type (p(s−1)(k−1) pk−1

p−1
; k, 0, . . . , 0).

For all c ∈ Sβ
k \{0}, wH(c) = p(s−1)(k−1) pk−1

p−1
− pν(c)(p(s−1)(k−2) pk−1−1

p−1
),

so
dH(Sβ

k ) = ps(k−1).

For every valuation j ∈ {0, 1, . . . , s − 1}, there are pk(s−j) − pk((s−j)−1)

codewords of weight p(s−1)(k−1) pk−1
p−1

− pj(p(s−1)(k−2) pk−1−1
p−1

).

For c ∈ Sβ
k , wHom(c) =


psk−1 if ν(c) = s − 1,

psk−k−1(pk − 1) if ν(c) < s − 1,

0 otherwise,
so

dHom(Sβ
k ) = psk−k−1(pk − 1).

Sβ
k is optimal for the Griesmer-type bound, for every prime p and s ≥ 1.
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Results for Φs(Sα
k ) and Φs(Sβ

k )

The generalized Gray map is an isometry Φs : (Zn
ps , dHom) 7−→ (Zps−1n

p , dH).
Moreover, generalized Gray map images of any linear code are distance
invariant, as d(Φs(x),Φs(y)) = wH(Φs(x − y)) for any x , y ∈ Zn

ps .

Theorem

The code Φs(Sα
k ) is a (ps(k+1)−1, psk , ps(k+1)−2(p − 1)) code over Zp

having all codewords of the same Hamming weight equal to
ps(k+1)−2(p − 1), except the all-zero codeword.

The code Φs(Sβ
k ) with k ≥ 2 is a (p(s−1)k pk−1

p−1
, psk , psk−k−1(pk − 1)) code

over Zp, having pk − 1 codewords of Hamming weight psk − 1, psk − pk

codewords of Hamming weight psk−k−1(pk − 1) and one of Hamming
weight zero.
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Construction of Zps -additive MacDonald codes: type α

Let k ≥ 1 and 1 ≤ u ≤ k − 1. We define Gα
k,u as follows:

Gα
k,u =

(
Gα

k \ 0
Gα
u

)
=

(
0 1 2 3 · · · ps − 1

Gα
k−1,u Gα

k−1 Gα
k−1 Gα

k−1 · · · Gα
k−1

)
,

where (A\B) is the matrix A by deleting the columns of B.

The code generated by Gα
k,u is denoted by Mα

k,u and is called a Zps -additive
MacDonald code of type α with k ≥ 1 generators.

Example

Take Z4. Then, we have that

Gα
2,1 =

(
���0000 1111 2222 3333
���0123 0123 0123 0123

)
.
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Construction of Zps -additive MacDonald codes: type β

Let k ≥ 2 and 1 ≤ u ≤ k − 1. We define Gβ
k,u as follows:

Gβ
k,u =

(
Gβ

k \ 0

G
β
u

)
=

(
1 0 p 2p · · · ps − p

Gα
k−1 Gβ

k−1,u Gβ
k−1 Gβ

k−1 · · · Gβ
k−1

)
,

The code generated by Gβ
k,u is denoted by Mβ

k,u and is called a Zps -additive

MacDonald code of type β with k ≥ 2 generators.

Example

Consider Z4. Then, we have that

Gβ
3,1 =

 1111 1111 1111 1111 0000�00 222222
0000 1111 2222 3333 1111�02 111102
0123 0123 0123 0123 0123�11 012311

 .
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Future research

Generalize the results for simplex codes defined over any finite chain ring.

Study the weight distributions of Mα
k,u and Mβ

k,u.

Study the linearity of Φs(S
α
k ), Φs(S

β
k ), as well as their kernel and rank.
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Thank you for your attention!
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