$\mathbb{Z}_{p^S} \text{-additive codes} \\ \mathbb{Z}_{p^S} \text{-additive simplex and MacDonald codes} \\ Future research \\ Future research \\ \end{bmatrix}$

Weight distributions of \mathbb{Z}_{p^s} -additive simplex and MacDonald codes

C.Fernández-Córdoba, S.Sánchez-Aragón and M.Villanueva

8th Workshop on Design Theory, Hadamard Matrices and Applications Sevilla, June 26th-30th, 2025

Work partially supported by the Spanish MICIN under Grant PID2022-137924NB-I00 and by the Catalan AGAUR grant 2021 SGR 00643.

Combinatorics, Coding and Security Group

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva

 $\begin{array}{c} \bullet \square \models \bullet \bullet \blacksquare \models \bullet \bullet \blacksquare \models \bullet \bullet \bullet \blacksquare \models \bullet \bullet \blacksquare \bullet \bullet \bullet \blacksquare \\ \hline \end{array}$ Weight distributions of $\mathbb{Z}_{p^{s}}$ -additive simplex and MacDonald coc

Motivation $\mathbb{Z}_{p^{S}}\text{-additive codes}$ $\mathbb{Z}_{p^{S}}\text{-additive simplex and MacDonald codes}$ Future research

Outline

2 \mathbb{Z}_{p^s} -additive codes

- 3 \mathbb{Z}_{p^s} -additive simplex and MacDonald codes
 - Construction of \mathbb{Z}_{p^s} -additive simplex codes
 - Results for \mathbb{Z}_{p^s} -additive simplex codes
 - Construction of \mathbb{Z}_{p^s} -additive MacDonald codes

Future research

• • = • • = •

$\begin{array}{c} {\rm Motivation} \\ \mathbb{Z}_{p^{\rm S}} \text{-additive codes} \\ \mathbb{Z}_{p^{\rm S}} \text{-additive simplex and MacDonald codes} \\ {\rm Future research} \end{array}$

Motivation

Since the publication in 1994 of the famous paper

A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The Z₄-linearity of Kerdock, Preparata, Goethals and related codes, *IEEE Trans. Inform. Theory*, **40** (1994), 301–319.

the study of linear codes over rings has received a lot of attention.

Simplex and MacDonald codes over \mathbb{Z}_{2^s} have been studied in

м.к.

M.K. Gupta, M.C. Bhandari, and A.K. Lal: On some linear codes over \mathbb{Z}_{2^S} . Designs, Codes and Cryptography, 36, no. 3, pp. 227–244 (2005).

C. Fernández-Córdoba, C. Vela and M. Villanueva: Nonlinearity and Kernel of Z₂s-Linear simplex and MacDonald Codes. *IEEE Transactions on Information Theory*, 68, no. 11, pp. 7174-7183 (2021).

Our goal is to generalize and study these families of codes over \mathbb{Z}_{p^s} for an arbitrary prime p and $s \ge 1$.

イロト イボト イヨト イヨト

 $\mathbb{Z}_{p^{S}} \text{-additive codes} \\ \mathbb{Z}_{p^{S}} \text{-additive simplex and MacDonald codes} \\ Future research$

Outline

2 \mathbb{Z}_{p^s} -additive codes

3 \mathbb{Z}_{p^s} -additive simplex and MacDonald codes

- Construction of \mathbb{Z}_{p^s} -additive simplex codes
- Results for \mathbb{Z}_{p^s} -additive simplex codes
- Construction of \mathbb{Z}_{p^s} -additive MacDonald codes

4 Future research

伺 ト イヨト イヨト

Motivation $\mathbb{Z}_{p^{\rm S}}\text{-additive codes}$ $\mathbb{Z}_{p^{\rm S}}\text{-additive simplex and MacDonald codes}$ Future research

\mathbb{Z}_{p^s} -additive codes

A code over \mathbb{Z}_{p^s} of length *n* is a non-empty subset \mathcal{C} of $\mathbb{Z}_{p^s}^n$.

If C has group structure, then it is called a \mathbb{Z}_{p^s} -additive code. In this case, C is a subgroup of $\mathbb{Z}_{p^s}^n$, so it is isomorphic to an abelian structure $\mathbb{Z}_{p^s}^{t_1} \times \mathbb{Z}_{p^{s-1}}^{t_2} \times \cdots \times \mathbb{Z}_{p^2}^{t_s-1} \times \mathbb{Z}_p^{t_s}$, and we say that C is of **type** $(n; t_1, \ldots, t_s)$. A matrix with rows that are generators of a code is called a **generator matrix**. There is a generator matrix of C (with minimum number of rows) having t_i rows of order $p^{s-(i-1)}$ for all $i \in \{1, \ldots, s\}$.

Example

In ℤ₂₇,

$$A=\left(egin{array}{cccccc} 1&2&3&4&5\ 0&3&9&12&15\ 0&0&9&18&9 \end{array}
ight)$$

generates a linear code of type (5; 1, 1, 1).

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

I na ∩

Motivation $\mathbb{Z}_{p^{\rm S}}\text{-additive codes}$ $\mathbb{Z}_{p^{\rm S}}\text{-additive simplex and MacDonald codes}$ Future research

Weights for $\mathbb{Z}_{p^s}^n$

Consider $c = (c_1, \ldots, c_n) \in \mathbb{Z}_{p^s}^n$. The Hamming weight of c is defined as

$$w_H(c) = |\{1 \le i \le n \mid c_i \ne 0\}|.$$

The homogeneous weight of c_i is defined as

$$w_{Hom}(c_i) = egin{cases} 0 & ext{if } c_i = 0, \ p^{s-1} & ext{if } c_i
eq 0 ext{ and } c_i \in \langle p^{s-1}
angle, \ (p-1)p^{s-2} & ext{otherwise}, \end{cases}$$

and $w_{Hom}(c) = \sum_{i=1}^{n} w_{Hom}(c_i)$.

Example

Consider $\mathbb{Z}_9 = \mathbb{Z}_{3^2}$ and c = (0, 1, 2, 3, 4). Then, $w_H(c) = 4$ and $w_{Hom}(c) = 3 \cdot 2 + 1 \cdot 3 = 9$.

These weights w define **distance functions** by taking d(x, y) = w(x - y).

ロト (日) (日) (日) (日) (日) (0)

 $\mathbb{Z}_{p^{S}} \text{-additive codes} \\ \mathbb{Z}_{p^{S}} \text{-additive simplex and MacDonald codes} \\ Future research$

Order and valuation

We define the **order** of $x \in \mathbb{Z}_{\rho^s}^n$, denoted by o(x), as the smallest natural number m such that $mx = \mathbf{0}$.

We define the **valuation** of $x \in \mathbb{Z}_{p^s}^n \setminus \{\mathbf{0}\}$, denoted by $\nu(x)$, as the largest natural number k such that $x = p^k y$, where y is another nonzero element of $\mathbb{Z}_{p^s}^n$. For $x = \mathbf{0}$, we define its valuation as $\nu(\mathbf{0}) = \infty$.

For $x \neq 0$, $o(x) = p^{s-\nu(x)}$.

Example

For
$$x = (0,1) \in \mathbb{Z}_4^2$$
, we have that $o(x) = 4$ and $\nu(x) = 0$.
For $y = (2,2) \in \mathbb{Z}_4^2$, we have that $o(y) = 2$ and $\nu(y) = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

A Griesmer-type bound for \mathbb{Z}_{p^s} -additive codes

The minimum Hamming distance of a $\mathbb{Z}_{p^s}\text{-}\mathsf{additive}$ code $\mathcal C$ is

 $d_H(\mathcal{C}) = \min\{w_H(c) \mid c \in \mathcal{C} \setminus \{\mathbf{0}\}\}.$

Theorem

Let C be a \mathbb{Z}_{p^s} -additive code of type $(n; t_1, \ldots, t_s)$ and minimum Hamming distance $d_H(C)$, and let $k = \sum_{i=1}^s t_i$. Then, we have that

$$n \geq \sum_{i=0}^{k-1} \lceil \frac{d_H(\mathcal{C})}{p^i} \rceil.$$

When this bound is met, the code C is optimal for the Griesmer-type bound.

K. Shiromoto and L. Storme, A Griesmer bound for linear codes over finite quasi-Frobenius rings. *Discrete Applied Mathematics*, 128, no. 1 pp. 263-274.

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva Weight distributions of Z_ps-additive simplex and MacDonald coc

イロト イポト イヨト イヨト 三日

 $\mathbb{Z}_{p^{S}} \text{-additive codes} \\ \mathbb{Z}_{p^{S}} \text{-additive simplex and MacDonald codes} \\ Future research$

The generalized Gray map

The generalized Gray map $\Phi_s : \mathbb{Z}_{p^s} \longmapsto \mathbb{Z}_p^{p^{s-1}}$ is defined as follows:

$$\Phi_{s}(u) = (u_0, \ldots, u_{s-2}, u_{s-1})M_{s-1},$$

where $[u_0, u_1, \ldots, u_{s-1}]_p$ is the *p*-ary expansion of $u \in \mathbb{Z}_{p^s}$, $u = \sum_{i=0}^{s-1} u_i p^i$ with $u_i \in \{0, \ldots, p-1\}$, and

$$M_{s-1} = \begin{pmatrix} Y_{s-1} \\ 1 \end{pmatrix}, \tag{1}$$

where Y_{s-1} is the matrix of size $s - 1 \times p^{s-1}$ over \mathbb{Z}_p such that its columns are all the elements of \mathbb{Z}_p^{s-1} . We define Φ_s over $\mathbb{Z}_p^{n_s}$ component-wise.

Example

The generalized Gray map for \mathbb{Z}_8 is $\Phi_3 : \mathbb{Z}_8 \longrightarrow \mathbb{Z}_2^4$:

<i>M</i> ₂ =	(0011)	$0 = [000]_2$	\mapsto	0000	$4 = [001]_2$	\mapsto	1111
	$\left(\begin{array}{c}0011\\0101\\1111\end{array}\right)$	$1 = [100]_2$	\mapsto	0011	$5 = [101]_2$	\mapsto	1100
		$2 = [010]_2$	\mapsto	0101	$6 = [011]_2$	\mapsto	1010
		$3 = [110]_2$	\mapsto	0110	$7 = [111]_2$	\longmapsto	1001

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva

Weight distributions of $\mathbb{Z}_{p^{S}}$ -additive simplex and MacDonald cod

Construction of $\mathbb{Z}_{p^{S}}$ -additive simplex codes Results for $\mathbb{Z}_{p^{S}}$ -additive simplex codes Construction of $\mathbb{Z}_{p^{S}}$ -additive MacDonald codes

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Outline

2 \mathbb{Z}_{p^s} -additive codes

3 \mathbb{Z}_{p^s} -additive simplex and MacDonald codes

- Construction of Z_{p^s}-additive simplex codes
- Results for \mathbb{Z}_{p^s} -additive simplex codes
- Construction of Z_{p^s}-additive MacDonald codes

4 Future research

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive MacDonald codes} \\ \end{array}$

イロト 不得 トイヨト イヨト 三日

Construction of \mathbb{Z}_{p^s} -additive simplex codes: type α

Let G_k^{α} be the matrix consisting of all possible distinct columns.

$$G_1^{\alpha} = \begin{pmatrix} 0 & 1 & 2 & \cdots & p^s - 1 \end{pmatrix} \text{ and}$$
$$G_k^{\alpha} = \begin{pmatrix} 0 & 1 & 2 & \cdots & p^s - 1 \\ G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & \cdots & G_{k-1}^{\alpha} \end{pmatrix}$$

The code generated by G_k^{α} , denoted by S_k^{α} , is called a \mathbb{Z}_{p^s} -additive simplex code of type α with $k \ge 1$ generators.

Example

Consider \mathbb{Z}_3 . Then, we have that

$$G_1^{\alpha} = (012), \quad G_2^{\alpha} = \left(egin{array}{ccc} 000 & 111 & 222 \ 012 & 012 & 012 \end{array}
ight).$$

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive MacDonald codes} \\ \end{array}$

Construction of \mathbb{Z}_{p^s} -additive simplex codes: type β

Let G_k^{β} be the matrix constructed recursively as follows:

$$G_{1}^{\beta} = (1), \quad G_{2}^{\beta} = \begin{pmatrix} 1 & 0 & p & \cdots & p^{s} - p \\ 0 & 1 & 2 & \cdots & p^{s} - 1 & 1 & 1 & \cdots & 1 \end{pmatrix},$$
$$G_{k}^{\beta} = \begin{pmatrix} 1 & 0 & \cdots & p^{s} - p \\ G_{k-1}^{\alpha} & G_{k-1}^{\beta} & \cdots & G_{k-1}^{\beta} \end{pmatrix}.$$

The code generated by
$$G_k^{\beta}$$
, denoted by S_k^{β} , is called a \mathbb{Z}_{p^s} -additive simplex code of type β with $k \ge 1$ generators.

Example

Consider \mathbb{Z}_9 . Then, we have that

$$\mathcal{G}_1^eta=(1)\,,$$

$$G_2^{\beta} = \left(\begin{array}{rrrrr} 111111111 & 0 & 3 & 6\\ 012345678 & 1 & 1 & 1 \end{array}\right)$$

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive MacDonald codes} \\ \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Results for \mathcal{S}_k^{α}

Theorem

•
$$S_k^{\alpha}$$
 has type $(p^{sk}; k, 0, ..., 0)$.

• For all $c \in S_k^{lpha} ackslash \{ m{0} \}$, $w_{H}(c) = p^{sk} - p^{
u(c)} p^{s(k-1)}$, so

$$d_{\mathcal{H}}(S_k^{\alpha}) = (p-1)p^{sk-1}.$$

For every valuation $j \in \{0, 1, \dots, s-1\}$, there are $p^{k(s-j)} - p^{k((s-j)-1)}$ codewords of weight $p^{sk} - p^j p^{s(k-1)}$.

• For all $c\in S^lpha_kackslash \{m{0}\}$, w $_{Hom}(c)=p^{s(k+1)-2}(p-1)$, so

$$d_{Hom}(S_k^{\alpha}) = p^{s(k+1)-2}(p-1).$$

• S_k^{α} is not optimal for the Griesmer-type bound, for any prime p and $s \ge 1$.

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive MacDonald codes} \\ \end{array}$

Results for \mathcal{S}_k^eta

Theorem

- S_k^{β} has type $(p^{(s-1)(k-1)} \frac{p^k-1}{p-1}; k, 0, \dots, 0).$
- For all $c \in S_k^{\beta} \setminus \{\mathbf{0}\}$, $w_H(c) = p^{(s-1)(k-1)} \frac{p^k 1}{p-1} p^{\nu(c)} (p^{(s-1)(k-2)} \frac{p^{k-1} 1}{p-1})$, so

$$d_{H}(\mathcal{S}_{k}^{\beta}) = p^{s(k-1)}$$

For every valuation $j \in \{0, 1, \dots, s-1\}$, there are $p^{k(s-j)} - p^{k((s-j)-1)}$ codewords of weight $p^{(s-1)(k-1)} \frac{p^k-1}{p-1} - p^j (p^{(s-1)(k-2)} \frac{p^{k-1}-1}{p-1})$.

• For
$$c \in \mathcal{S}_k^{\beta}$$
, $w_{Hom}(c) = \begin{cases} p^{sk-1} & \text{if } \nu(c) = s-1, \\ p^{sk-k-1}(p^k-1) & \text{if } \nu(c) < s-1, \\ 0 & \text{otherwise}, \end{cases}$

SO

$$d_{Hom}(\mathcal{S}_k^\beta) = p^{sk-k-1}(p^k-1).$$

• S_k^{β} is optimal for the Griesmer-type bound, for every prime p and $s \ge 1$.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{s}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{s}}$-additive MacDonald codes} \\ \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Results for $\Phi_s(\mathcal{S}_k^{\alpha})$ and $\Phi_s(\mathcal{S}_k^{\beta})$

The generalized Gray map is an isometry $\Phi_s : (\mathbb{Z}_p^{p_s}, d_{Hom}) \longmapsto (\mathbb{Z}_p^{p^{s-1}n}, d_H)$. Moreover, generalized Gray map images of any linear code are distance invariant, as $d(\Phi_s(x), \Phi_s(y)) = w_H(\Phi_s(x - y))$ for any $x, y \in \mathbb{Z}_p^{n_s}$.

Theorem

- The code Φ_s(S^α_k) is a (p^{s(k+1)-1}, p^{sk}, p^{s(k+1)-2}(p − 1)) code over Z_p having all codewords of the same Hamming weight equal to p^{s(k+1)-2}(p − 1), except the all-zero codeword.
- The code $\Phi_s(S_k^\beta)$ with $k \ge 2$ is a $(p^{(s-1)k}\frac{p^k-1}{p-1}, p^{sk}, p^{sk-k-1}(p^k-1))$ code over \mathbb{Z}_p , having $p^k 1$ codewords of Hamming weight $p^{sk} 1$, $p^{sk} p^k$ codewords of Hamming weight $p^{sk-k-1}(p^k-1)$ and one of Hamming weight zero.

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive MacDonald codes} \\ \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Construction of \mathbb{Z}_{p^s} -additive MacDonald codes: type α

Let $k \ge 1$ and $1 \le u \le k - 1$. We define $G_{k,u}^{\alpha}$ as follows:

$$G_{k,u}^{\alpha} = \begin{pmatrix} G_{k}^{\alpha} & \backslash & \frac{\mathbf{0}}{G_{u}^{\alpha}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \cdots & \mathbf{p^{s}-1} \\ G_{k-1,u}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & \cdots & G_{k-1}^{\alpha} \end{pmatrix},$$

where $(A \backslash B)$ is the matrix A by deleting the columns of B .

The code generated by $G_{k,u}^{\alpha}$ is denoted by $M_{k,u}^{\alpha}$ and is called a $\mathbb{Z}_{p^{s}}$ -additive MacDonald code of type α with $k \geq 1$ generators.

Example

Take \mathbb{Z}_4 . Then, we have that

$$G_{2,1}^{\alpha} = \begin{pmatrix} 00007 & 1111 & 2222 & 3333\\ 0123 & 0123 & 0123 & 0123 \end{pmatrix}$$

 $\begin{array}{l} \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Results for $\mathbb{Z}_{p^{S}}$-additive simplex codes} \\ \mbox{Construction of $\mathbb{Z}_{p^{S}}$-additive MacDonald codes} \\ \end{array}$

Construction of \mathbb{Z}_{p^s} -additive MacDonald codes: type β

Let $k \ge 2$ and $1 \le u \le k - 1$. We define $G_{k,u}^{\beta}$ as follows:

$$G_{k,u}^{\beta} = \left(\begin{array}{ccc}G_{k}^{\beta} & \setminus & \underline{\mathbf{0}}\\G_{k}^{\alpha}\end{array}\right) = \left(\begin{array}{cccc}\mathbf{1} & \mathbf{0} & \mathbf{p} & \mathbf{2p} & \cdots & \mathbf{p^{s}-p}\\G_{k-1}^{\alpha} & G_{k-1,u}^{\beta} & G_{k-1}^{\beta} & G_{k-1}^{\beta} & \cdots & G_{k-1}^{\beta}\end{array}\right),$$

The code generated by $G_{k,u}^{\beta}$ is denoted by $M_{k,u}^{\beta}$ and is called a $\mathbb{Z}_{p^{s}}$ -additive MacDonald code of type β with $k \geq 2$ generators.

Example

Consider \mathbb{Z}_4 . Then, we have that

	/ 1111	1111	1111	1111	0000 <mark>Ø</mark> 0	222222 \
$G_{3,1}^{\beta} =$	0000	1111	2222	3333	1111 <mark>0</mark> 2	111102
- ,	0123	0123	0123	0123	0123/1	012311 /

Outline

- 2 \mathbb{Z}_{p^s} -additive codes
- $\mathfrak{3}$ \mathbb{Z}_{p^s} -additive simplex and MacDonald codes
 - Construction of \mathbb{Z}_{p^s} -additive simplex codes
 - Results for \mathbb{Z}_{p^s} -additive simplex codes
 - Construction of \mathbb{Z}_{p^s} -additive MacDonald codes

4 Future research

伺 ト イヨト イヨト

Future research

- Generalize the results for simplex codes defined over any finite chain ring.
- Study the weight distributions of $M_{k,u}^{\alpha}$ and $M_{k,u}^{\beta}$.
- Study the linearity of $\Phi_s(S_k^{\alpha})$, $\Phi_s(S_k^{\beta})$, as well as their kernel and rank.

Thank you for your attention!

C.Fernández-Córdoba, S. Sánchez-Aragón and M.Villanueva Weight distributions of Z_ps-additive simplex and MacDonald coc

伺 ト イヨト イヨト