Legendre pairs, balanced incomplete block designs and codes

Daniel Šanko daniel.sanko@math.uniri.hr

(Joint work with Dean Crnković and Andrea Švob)

This work was supported by the Croatian Science Foundation under the project number $$\rm HRZZ\-IP\-2022\-10\-4571}$.

Faculty of Mathematics - University of Rijeka

May 26, 2025.

• Introduction: Legendre pairs were introduced in 2001 by J. Seberry and her students

- Introduction: Legendre pairs were introduced in 2001 by J. Seberry and her students
- Motivation: The primary goal was to develop new constructions for Hadamard matrices

$LP(\ell)$

Definition

Let ℓ be an odd positive integer. Two sequences $A = [a_1, \ldots, a_\ell]$ and $B = [b_1, \ldots, b_\ell]$ of length ℓ with $a_i, b_i \in \{-1, +1\}$ and

$$\sum_{i=1}^{\ell} a_i = \sum_{i=1}^{\ell} b_i = \pm 1,$$

form a Legendre pair if

$$PAF(A,s) + PAF(B,s) = -2$$
, for $s = 1, \dots, \frac{\ell-1}{2}$.

$LP(\ell)$

Definition

Let ℓ be an odd positive integer. Two sequences $A = [a_1, \ldots, a_\ell]$ and $B = [b_1, \ldots, b_\ell]$ of length ℓ with $a_i, b_i \in \{-1, +1\}$ and

$$\sum_{i=1}^{\ell} a_i = \sum_{i=1}^{\ell} b_i = \pm 1,$$

form a Legendre pair if

$$\mathsf{PAF}(\mathsf{A},s) + \mathsf{PAF}(\mathsf{B},s) = -2, \quad ext{for } s = 1,\ldots, rac{\ell-1}{2}.$$

For a sequence $A = [a_1, \ldots, a_\ell]$ with $a_i \in \{-1, +1\}$, the **PAF** at shift *s* is defined as

$$\mathsf{PAF}(A,s) = \sum_{i=1}^{\ell} a_i a_{i+s \mod \ell}, \quad s = 0, \dots, \ell-1.$$

Transformations that preserve equivalence¹:

¹R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Transformations that preserve equivalence¹:

• Exchange:

 $(A,B) \sim (B,A)$

¹R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Transformations that preserve equivalence¹:

• Exchange:

 $(A,B) \sim (B,A)$

• Cyclic shift:

 $(A,B) \sim (C(A),C(B)) \sim (C(A),B) \sim (A,C(B))$

¹R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Transformations that preserve equivalence¹:

• Exchange:

 $(A,B) \sim (B,A)$

• Cyclic shift:

$$(A, B) \sim (C(A), C(B)) \sim (C(A), B) \sim (A, C(B))$$

Reversal:

 $(A,B) \sim (R(A),R(B)) \sim (R(A),B) \sim (A,R(B))$

¹R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Transformations that preserve equivalence¹:

• Exchange:

$$(A,B) \sim (B,A)$$

• Cyclic shift:

$$(A, B) \sim (C(A), C(B)) \sim (C(A), B) \sim (A, C(B))$$

Reversal:

$$(A,B) \sim (R(A),R(B)) \sim (R(A),B) \sim (A,R(B))$$

Decimation:

$$(A,B)\sim (d_k(A),d_k(B)), \ k\in \mathbb{Z}_\ell^{ imes}=\{j\in \mathbb{Z}_\ell| \mathsf{gcd}(j,\ell)=1\}$$

¹R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Incidence structure \mathcal{D} is an ordered triple $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$, where \mathcal{P} is a non empty set of elements called points, \mathcal{B} is a collection of subsets of \mathcal{P} called blocks, and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$.

Definition

Let v, k, λ be positive integers. Incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ is called a $t - (v, k, \lambda)$ design if

•
$$|\mathcal{P}| = v$$
,

- each element of \mathcal{B} is incident with k elements of \mathcal{P} ,
- every t distinct elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Definition

A **linear code** C of length n and dimension k over \mathbb{F}_q is a k-dimensional subspace of \mathbb{F}_q^n .

- Binary (q = 2), Ternary (q = 3)
- Code size: q^k
- Codewords: vectors in the code

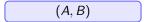
Let
$$x=(x_1,\ldots,x_n), \; y=(y_1,\ldots,y_n)\in \mathbb{F}_q^n$$

- Hamming Distance: $d(x, y) = |\{i : x_i \neq y_i\}|$
- Minimum Distance: $d = \min \{d(x, y) : x, y \in C, x \neq y\}$
- Weight: $w(x) = d(x, 0) = |\{i : x_i \neq 0\}|$

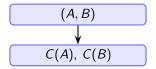
- Cyclic code: invariant under full shifts
- Quasi-cyclic: invariant under shifts of ℓ positions

The **dual** code C^{\perp} of the code C is $C^{\perp} = \left\{ x \in \mathbb{F}_q^n : x \cdot c = 0, \forall c \in C \right\}$

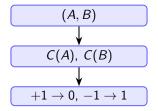
- Self-orthogonal: $C \subseteq C^{\perp}$
- Self-dual: $C = C^{\perp}$



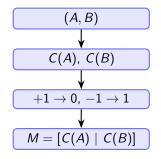
A = [+, +, -, -, +], B = [+, -, +, +, -]

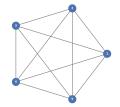


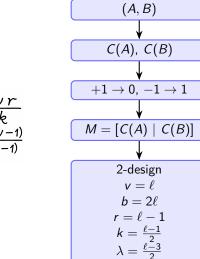
$$C(A) = \begin{bmatrix} + & + & - & - & + \\ + & + & + & - & - \\ - & + & + & + & - \\ - & - & + & + & + \\ + & - & - & - & + & + \end{bmatrix}, \ C(B) = \begin{bmatrix} + & - & + & + & - \\ - & + & - & + & + \\ + & - & - & + & + \\ + & + & - & + & - \\ - & + & + & - & + \end{bmatrix}$$

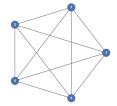


$$C(A) = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}, \ C(B) = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

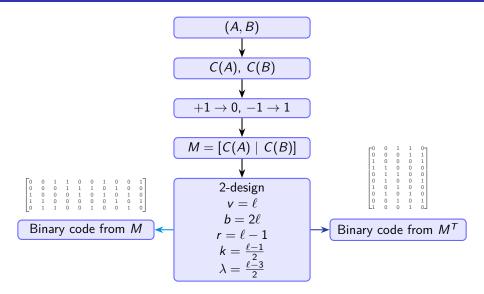


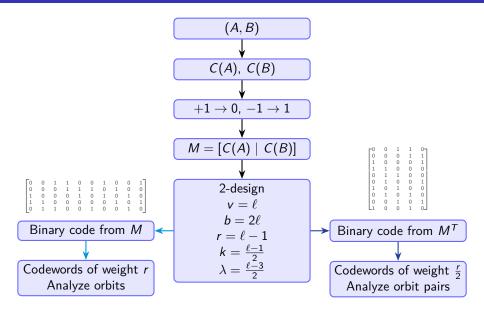


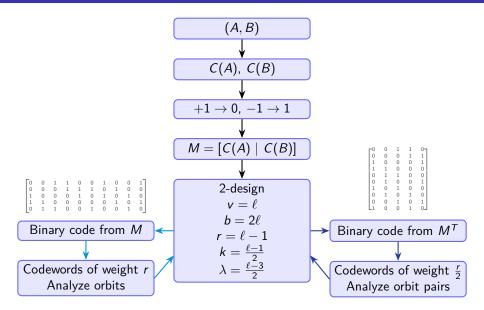


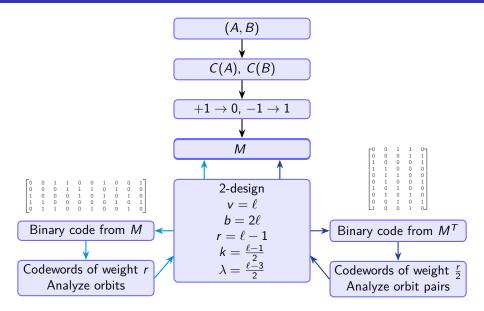


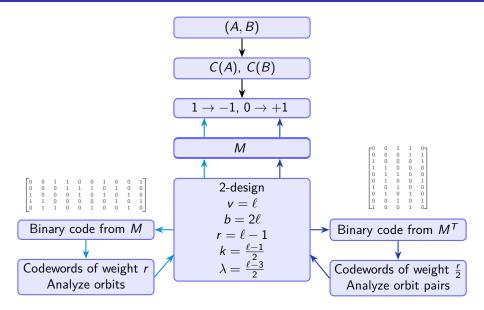
$$b = \frac{vr}{k}$$
$$r = \frac{\lambda(v-1)}{(k-1)}$$

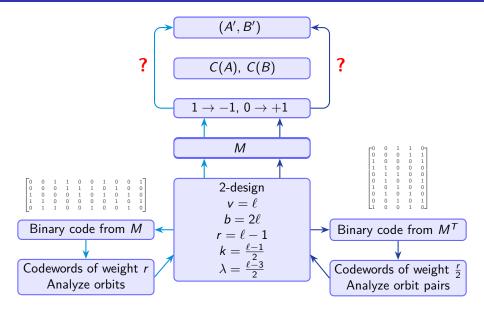












l	Design	Aut	Order	Code	Aut	Order	# Designs	# New Designs	Aut	Order	# LP
5	2-(5,2,1)	S ₅	120	[10,4,4]	S ₅	120	1	0	/	/	1
7	2-(7,3,2)	F7	42	[14,7,4]	$\mathrm{PSL}(2,7)\wr C_2$	56448	7	0	/	/	1
9	2-(9,4,3)	C ₉	9	[18,8,4]	D_9	18	2	0	/	/	1
11	2-(11,5,4)	F ₁₁	110	[22,11,6]	$M_{22} \cdot C_2$	887040	11	1	C ₁₁	11	2
13	2-(13,6,5)	F ₁₃	156	[26,12,8]	F ₁₃	156	1	0	/	/	1
15	2-(15,7,6)	C ₁₅	15	[30,13,6]	$D_5 imes S_4$	240	10	1 1	$C_5 \times S_3$ C_{15}	30 15	2
17	2-(17,8,7)	F ₁₇	272	[34,16,6]	$C_{17}^2\cdot C_8^2\cdot C_2$	36992	17	0	/	/	1
19	2-(19,9,8)	F ₁₉	342	[38,19,8]	F ₁₉	342	7	1	$C_{19} \rtimes C_3$	57	2
21	2-(21,10,9)	C ₂₁	21	[42,20,8]	C ₂₁	21	1	0	/	/	1
23	2-(23,11,10)	F ₂₃	506	[46,23,8]	$M_{23} \wr C_2$	$\approx 2\cdot 10^{14}$	23	0	/	/	1
25	2-(25,12,11)	C ₂₅	25	[50,24,10]	C ₂₅	25	1	0	/	/	1
27	2-(27,13,12)	C ₂₇	27	[54,27,8]	D ₂₇	54	14	6	C ₂₇	27	7
29	2-(29,14,13)	F ₂₉	812	[58,28,12]	F ₂₉	812	1	0	/	/	1
31	2-(31,15,14)	F ₃₁	930	[62,31,8]	$(C_{31}\rtimes C_{15})\wr C_2$	432450	496	2 1	$ \begin{array}{c} C_{31} \rtimes C_5 \\ D_{31} \rtimes C_5 \end{array} $	155 310	4

ℓ	Design	Aut	Order	Code	Aut	Order	$\# \ Designs$	# New Designs	Aut	Order	# LP
5	2-(5,2,1)	S ₅	120	[5,4,2]	<i>S</i> ₅	120	1	0	/	/	1
7	2-(7,3,2)	F7	42	[7,7,1]	S7	5040	1	0	/	/	1
9	2-(9,4,3)	C9	9	[9,8,2]	S_9	362880	6	0	/	/	1
11	2-(11,5,4)	F ₁₁	110	[11,11,1]	S ₁₁	39916800	11	1	C ₁₁	11	2
13	2-(13,6,5)	F ₁₃	156	[13,12,2]	S ₁₃	$\approx 6\cdot 10^9$	21	1 2	$\begin{array}{c} C_{13} \\ C_{13} \rtimes C_3 \end{array}$	13 39	4
15	2-(15,7,6)	C ₁₅	15	[15,13,2]	$A_5^3 \cdot A_4 \cdot C_2^2$	10368000	21	1 1 1	$\begin{array}{c} C_{15} \\ C_5 \times S_3 \\ S_3 \times F_5 \end{array}$	15 30 120	3
17	2-(17,8,7)	F ₁₇	272	[17,16,2]	S ₁₇	$\approx 356\cdot 10^{12}$	161	10	C ₁₇	17	7
19	2-(19,9,8)	F19	342	[19,19,1]	S ₁₉	$\approx 12\cdot 10^{16}$	223	11 4	$\begin{array}{c} C_{19} \\ C_{19} \rtimes C_3 \end{array}$	19 57	9
21	2-(21,10,9)	C ₂₁	21	[21,20,2]	S ₂₁	$\approx 51\cdot 10^{18}$	492	40	C ₂₁	21	22
23	2-(23,11,10)	F ₂₃	506	[23,23,1]	S ₂₃	$\approx 26\cdot 10^{21}$	1167	53	C ₂₃	23	28
25	2-(25,12,11)	C ₂₅	25	[25,24,2]	S ₂₅	$\approx 155\cdot 10^{23}$	1660	82	C ₂₅	25	46
27	2-(27,13,12)	C ₂₇	27	[27,27,1]	S ₂₇	$\approx 109\cdot 10^{26}$?	?	?	?	?
29	2-(29,14,13)	F ₂₉	812	[29,28,2]	S ₂₉	$\approx 88\cdot 10^{29}$?	?	?	?	?
31	2-(31,15,14)	F ₃₁	930	[31,31,1]	S ₃₁	$\approx 82\cdot 10^{32}$?	?	?	?	?

ℓ	N _{LP}	results from 2001 ²						
5	1	1						
7 9	1	1						
9	1	1						
11	2	2						
13	2 4	4						
15	3 7	8						
17	7	8						
19	9	9						
21	22	22						
23	28	28						
25	46	46						
27	?	102						
29	? ? ?	139						
31	?	201						

²R. J. Fletcher, M. Gysin, and J. Seberry, "Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices," *Australasian Journal of Combinatorics*, vol. 23, pp. 75–86, 2001.

Daniel Šanko daniel.sanko@math.uniri.hr

Legendre pairs, BIBDs and codes

Theorem

Let \mathcal{D} be a $t - (v, k, \lambda)$ BIBD corresponding to a $LP(\ell)$. Then the cyclic group $G \cong C_v$ is a subgroup of $Aut(\mathcal{D})$. Let H be a subgroup of G and Mbe a point orbit matrix with respect to the group H. Then the matrix Mspans a quasi-cyclic self-orthogonal code C of length $\frac{2v}{|H|}$ over the field $GF(p^n)$, where p is a prime dividing 2k and λ .

Similar results for periodic Golay pairs can be found in D. Crnković, D. Dumičić Danilović, R. Egan, A. Švob, Periodic Golay pairs and pairwise balanced designs, J. Algebraic Combin. 55 (2022), 245-257

Theorem

Let \mathcal{D} be a $t - (v, k, \lambda)$ BIBD corresponding to a $LP(\ell)$. Then the cyclic group $G \cong C_v$ is a subgroup of $Aut(\mathcal{D})$. Let H be a subgroup of G and Mbe a point orbit matrix with respect to the group H. Then the matrix Mspans a quasi-cyclic self-orthogonal code C of length $\frac{2v}{|H|}$ over the field $GF(p^n)$, where p is a prime dividing |H| and $2k - \lambda$.

Similar results for periodic Golay pairs can be found in D. Crnković, D. Dumičić Danilović, R. Egan, A. Švob, Periodic Golay pairs and pairwise balanced designs, J. Algebraic Combin. 55 (2022), 245-257

Thank you for your attention!