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Abstract

A d-dimensional Hadamard matrix of order n is a d-dimensional matrix H
of order n with entries 1,−1 such that for any j and distinct a, b,∑

1≤x1,...,x̂j ,...,xd≤n

H(x1, . . . , a, . . . , xd)H(x1, . . . , b, . . . , xd) = nd−1δab.

A three-dimensional Hadamard matrix is said to be a Hadamard cube. In
[2], Krčadinac, Pavčević, and Tabak used finite fields to construct Hadamard
cubes of order p+ 1 where p is a prime power.

Constructions of 2-dimensional Hadamard matrix vary widely. Goethals
and Seidel [1] in 1970 showed that a regular symmetric Hadamard matrix with
constant diagonal entries is constructed as a linear combination of the iden-
tity matrix, and adjacency matrices of a strongly regular graph with certain
parameters and its complement. Note that these three (0, 1)-matrices define
an association scheme.

In this talk, we provide a construction of Hadamard cubes as a linear com-
bination of adjacency matrices of association schemes on triples with certain
parameters [3]. Moreover, we will give a construction of association schemes on
triples with the desired parameters from any conference matrix. In particular,
we prove the following: Let n be the order of a conference matrix. Then there
exists a Hadamard cube of order n+ 1.
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