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Main result

A d-dimensional Hadamard matrix of order n is a d-dimensional matrix H
of order n with entries 1,−1 such that for any j and any a, b,∑

1≤x1,...,x̂j ,...,xd≤n

H(x1, . . . , a, . . . , xd)H(x1, . . . , b, . . . , xd) = nd−1δab.

A three-dimensional Hadamard matrix is said to be a Hadamard cube.
Known constructions for Hadamard cubes of order n:
▶ for n such that n is the order of a Hadamard matrix by Yang;
▶ for n = 2 · 3k, k ∈ Z>0 by Yang,
▶ for n such that n− 1 is an odd prime power by Krčadinac, Pavčević,

Tabak.

Main result (Bahmanian-S., 2025)

Let n be the order of a conference matrix. Then there exists a Hadamard
cube of order n.

Since a conference matrix of order n = 46 exists, a Hadamard cube of
order n = 46 exists, while n− 1 = 45 is not a prime power.
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Main result

To be more precise,

Theorem (Bahmanian-S., 2025)

(1) Let n be the order of a conference matrix. Then there exists an
association scheme on triple (X, {Ri}5i=0) with |X| = n.

(2) If an association scheme on triple (X, {Ri}5i=0) with |X| = n and the
same parameters of that in (1) exists, then a Hadamard cube of order
n exists.

Known result (Goethals-Seidel,
1970)

∃ certain association schemes
=⇒
∃ Hadamard matrices

→

Our result (Bahmanian-S., 2025)

∃ certain association schemes
on triples
=⇒
∃ Hadamard cubes
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Contents

▶ Association schemes and Hadamard matrices
▶ Strongly regular graph, regular symmetric Hadamard matrices with

constant diagonals.

▶ Association schemes on triples and Hadamard cubes
▶ Hadamard cubes: construction using finite fields
▶ Association scheme on triples; regular two-graphs, regular skew-two

graphs (the latter is new construction)
▶ How to construct Hadamard cubes from association schemes on triples
▶ Construction of association schemes on triples, which yield Hadamard

cubes, from conference matrices.
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Hadamard matrices, strongly regular graphs

▶ A Hadamard matrix of order n is an n× n matrix H with entries ±1,
satisfying HHT = nI.

▶ A Hadamard matrix H of order n2 is regular if H1 = ±n1 where 1 is
the all-ones vector.

▶ A strongly regular graph with parameters (v, k, λ, µ) is a graph on v
vertices with adjacency matrix A such that

A2 = kI + λA+ µ(J − I −A)

where I is the identity matrix and J is the all-ones matrix. Note that
AJ = JA = kI.
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Hadamard matrices and strongly regular graphs

Theorem (Goethals-Seidel, 1970)

The existence of the following are equivalent:

1. A regular symmetric Hadamard matrix of order 4t2 with constant
diagonals.

2. A strongly regular graph with parameters
(4t2, 2t2 + εt, t2 + εt, t2 + εt) for some ε ∈ {1,−1}.

▶ These structures are connected via the identity
H = ±I +A− (J − I −A).

▶ A strongly regular graph is equivalent to a symmetric association
scheme of class 2.

▶ (Real or complex) Hadamard matrices are constructed as a linear
combination of adjacency matrices of association schemes by
Chan-Godsil, Ikuta-Munemasa.

▶ Hadamard matrices with certain regularity are related to association
schemes.
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Demonstration how to obtain Hadamard matrices from
strongly regular graphs

▶ Assume that A is the adjacency matrix of an SRG;

A2 = kI + λA+ µ(J − I −A), AJ = JA = kI.

▶ If we set H = I + aA+ b(J − I −A) for a, b ∈ {1,−1}, we can
calculate as

HH⊤ = H2

= (I + aA+ b(J − I −A))2

= · · · (Using the above equalities)

= c0I + c1A+ c2J

for some c0, c1, c2,∈ Z.
▶ Then check whether a, b exist in {1,−1} such that c1 = c2 = 0.

→ If it is yes, then H with those a, b is a Hadamard matrix.
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Hadamard cubes

A Hadamard cube of order n is an n× n× n matrix H of order n with entries 1,−1
such that for any a, b,∑

H(x, y, a)H(x, y, b) =
∑

H(x, a, y)H(x, b, y) =
∑

H(a, x, y)H(b, x, y) = n2δab,

where x, y run over from 1 to n in the sum.

Krčadinac-Pavčević-Tabak, 2024:

▶ Let Fq be the finite field of order q, and χ be the quadratic character on Fq.

▶ Define H : (Fq ∪ {∞})3 → {1,−1} by

H(x, y, z) =



−1 if x = y = z,

1 if x = y ̸= z or x = z ̸= y or y = z ̸= x,

χ(z − y) if x = ∞,

χ(x− z) if y = ∞,

χ(y − x) if z = ∞,

χ((x− y)(y − z)(z − x)) otherwise.

Then the three-dimensional matrix H is a Hadamard cube of order q + 1.
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Association schemes on triples

Let X be a non-empty finite set again. Let {R0, . . . , Rm} be a partition of X ×X ×X
with m ≥ 4. An association scheme on triples (AST) is a pair (X, {Ri}mi=0) satisfying
the following four conditions:

1. The relations R0, R1, R2, R3 are chosen so that

R0 = {(x, x, x) | x ∈ X},
R1 = {(x, y, y) | x, y ∈ X,x ̸= y},
R2 = {(y, x, y) | x, y ∈ X,x ̸= y},
R3 = {(y, y, x) | x, y ∈ X,x ̸= y}.

2. For any i ∈ {0, . . . ,m} and any permutation σ of {1, 2, 3},
σ(Ri) := {(xσ(1), xσ(2), xσ(3)) | (x1, x2, x3) ∈ Ri} ∈ {R0, . . . , Rm}

3. For any i ∈ {0, . . . ,m}, there exists ni ∈ Z≥0 such that for any two distinct
elements x, y ∈ X,

ni = |{z ∈ X | (x, y, z) ∈ Ri}|.
4. For any i, j, k, ℓ ∈ {0, . . . ,m}, there exists pℓijk ∈ Z≥0 such that for any

(x, y, z) ∈ Rℓ,

pℓijk = |{w ∈ X | (w, y, z) ∈ Ri, (x,w, z) ∈ Rj , (x, y, w) ∈ Rk}|.
This value is said to be the intersection number.
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Association schemes on triples

▶ For each Ri ⊂ X ×X ×X (i ∈ {0, . . . ,m}), a three-dimensional matrix is
associated as follows. Let v = |X|. Define a v × v × v matrix Ai with the
(x, y, z)-entry, denoted (Ai)xyz, by

(Ai)xyz =

{
1 if (x, y, z) ∈ Ri,

0 otherwise.

The matrix Ai is said to be the adjacency matrix of the hypergraph (X,Ri).

Idea to construct Hadamard cubes:
For an association scheme on triples with adjacency matrices {Ai}0≤i≤m, consider the
following matrix

H =

m∑
i=0

aiAi

for some ai ∈ {1,−1}.
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How to check H =
∑m

i=0 aiAi to be a Hadamard cube

What we want to do
For distinct x, y ∈ X, to calculate the value∑

z,w∈X

HxzwHyzw, (1)

and find conditions for ai (i ∈ {0, . . . ,m}) such that (1) is zero.

(Also for
∑

z,w∈X

HzxwHzyw,
∑

z,w∈X

HzwxHzwx.)

To calculate (1), we use the ternary product for 3-dim matrices:

▶ For three v × v × v matrices A,B, and C, the ternary product for A,B,C,
denoted ABC is the v × v × v matrix D whose (x, y, z)-entry given by

(D)xyz =
∑
w∈X

(A)wyz(B)xwz(C)xyw.

For an AST (X, {Ri}mi=0), the intersection numbers

pℓijk = |{w ∈ X | (w, y, z) ∈ Ri, (x,w, z) ∈ Rj , (x, y, w) ∈ Rk}|

appear in the ternary product: AiAjAk =

m∑
ℓ=0

pℓijkAℓ.
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▶ For distinct x, y ∈ X, we want to calculate the value∑
z,w∈X

HxzwHyzw. (1)

▶ For three v × v × v matrices A,B, and C, the ternary product for A,B,C,
denoted ABC is the v × v × v matrix D whose (x, y, z)-entry defined by given by

(D)xyz =
∑
w∈X

(A)wyz(B)xwz(C)xyw.

To calculate (1), we use the ternary product for 3-dim matrices:

▶ Define H ′ by (H ′)xyz = Hyxz and by J the all-ones v × v × v matrix.

(H ′HJ)xyz =
∑
w∈X

H ′
wyzHxwzJxyw =

∑
w∈X

H ′
wyzHxwz =

∑
w∈X

HywzHxwz. (2)

▶ Since H ′ =
∑m

i=0 biAi for some bi and J =
∑m

i=0 Ai,

H ′HJ =
m∑

i,j,k=0

biajAiAjAk =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijkAℓ. (3)

▶ By combining (2) and (3), obtain
∑

w∈X HywzHxwz =
∑m

i,j,k,ℓ=0 biajp
ℓ
ijk(Aℓ)xyz.
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How to check H =
∑m

i=0 aiAi to be a Hadamard cube

▶ For distinct x, y ∈ X, we want to calculate the value∑
z,w∈X

HxzwHyzw. (1)

▶
∑
w∈X

HywzHxwz =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijk(Aℓ)xyz. (4)

▶ Take a sum in (4) over z ∈ X to obtain∑
z,w∈X

HxzwHyzw =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijk

∑
z∈X

(Aℓ)xyz

▶ Then∑
z∈X

(Aℓ)xyz = |{z ∈ X | (x, y, z) ∈ Rℓ}| = nℓ. (by the definition 3 in AST)

Therefore, we obtain: ∑
z,w∈X

HxzwHyzw =
m∑

i,j,k,ℓ=0

biajp
ℓ
ijknℓ.
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HxzwHyzw. (1)

▶
∑
w∈X

HywzHxwz =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijk(Aℓ)xyz. (4)

▶ Take a sum in (4) over z ∈ X to obtain∑
z,w∈X

HxzwHyzw =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijk

∑
z∈X

(Aℓ)xyz

▶ Then∑
z∈X

(Aℓ)xyz = |{z ∈ X | (x, y, z) ∈ Rℓ}| = nℓ. (by the definition 3 in AST)

Therefore, we obtain: ∑
z,w∈X

HxzwHyzw =
m∑

i,j,k,ℓ=0

biajp
ℓ
ijknℓ.
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How to check H =
∑m

i=0 aiAi to be a Hadamard cube

∑
z,w∈X

HxzwHyzw =

m∑
i,j,k,ℓ=0

biajp
ℓ
ijknℓ. (5)

▶ Note that pℓijk and nℓ in RHS in (5) are the parameters of AST.

▶ (b0, . . . , bm) is a permutation of (a0, . . . , am), depending on the AST.

▶ The remaining thing to do is to check which aj , bi ∈ {1,−1} (i, j ∈ {0, . . . ,m})
satisfy that RHS in (5) is zero.

▶ Similar to the cases of
∑

z,w∈X

HzxwHzyw,
∑

z,w∈X

HzwxHzwy.

→ Then, which AST do we consider?
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Examples of AST

Examples of ASTs:

▶ 2-(v, k, 1) designs;

▶ 2-transitive groups;

▶ regular two-graphs (including an example obtained from symmetric
conference matrices);

▶ · · ·
▶ regular skew two-graphs (that are obtained from skew-symmetric

conference matrices) (new example)

The rest of this talk describes how ASTs are obtained from conference
matrices.
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AST from conference matrices

▶ A conference matrix of order n is an n× n (0, 1,−1)-matrix C with
zero diagonal entries such that CC⊤ = (n− 1)I. (n must be even.)

▶ For some diagonal matrices D,D′ with diagonal entries 1,−1,
▶ DCD′ is symmetric if n = 4k + 2, k ∈ Z>0;
▶ DCD′ is skew-symmetric if n = 4k, k ∈ Z>0.

▶ Conference matrices of order n exist for, among others, the following
values:
▶ n = q + 1 where q is an odd prime number,
▶ n = q2(q + 2) + 1 where q ≡ 3 (mod 4) is a prime power and q + 2 is

a prime power,
▶ n = 5 · 92t+1 + 1 where t is a non-negative integer,
▶ · · · .
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AST from conference matrices

▶ A conference matrix of order n is an n× n (0, 1,−1)-matrix C with
zero diagonal entries such that CC⊤ = (n− 1)I. (n must be even.)

▶ For some diagonal matrices D,D′ with diagonal entries 1,−1,
▶ DCD′ is symmetric if n = 4k + 2, k ∈ Z>0;
▶ DCD′ is skew-symmetric if n = 4k, k ∈ Z>0.

Let C be a symmetric conference matrix of order n or skew-symmetric
conference matrix of order n. Define X = {1, . . . , n} and

R4 = {(x, y, z) ∈ X ×X ×X | CxyCyzCzx = 1},
R5 = {(x, y, z) ∈ X ×X ×X | CxyCyzCzx = −1}.

Theorem (Mesner-Bhattacharya, 1990, Bahmanian-S., 2025)

The pair (X, {Ri}5i=0) is an association scheme on triples.

The result for symmetric conference matrix case is due to
Mesner-Bhattacharya and that for skew-symmetric conference matrix case
is our new result.
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AST from conference matrices

Let C be a symmetric conference matrix of order n or skew-symmetric conference
matrix of order n. Define X = {1, . . . , n} and

R4 = {(x, y, z) ∈ X ×X ×X | CxyCyzCzx = 1},
R5 = {(x, y, z) ∈ X ×X ×X | CxyCyzCzx = −1}.

Theorem 1 (Mesner-Bhattacharya, 1990, Bahmanian-S., 2025)

The pair (X, {Ri}5i=0) is an association scheme on triples.

Theorem 2 (Bahmanian-S., 2025)

Let A0, . . . , A5 be the adjacency matrices of the AST in Theorem 1. Then
H =

∑5
i=0 aiAi is a Hadamard cube of order n if and only if (ai)

5
i=0 ∈ {1,−1}6

satisfies a0a1a2a3 = a4a5 = −1.

Proof: Check
∑

z,w∈X HxzwHyzw =
∑m

i,j,k,ℓ=0 biajp
ℓ
ijknℓ = 0. Similar to the other

cases.
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Main result

Theorem (Bahmanian-S., 2025)

(1) Let n be the order of a conference matrix C. Then there exists an
association scheme on triple (X, {Ri}5i=0) with |X| = n.

(2) Let A0, . . . , A5 be the adjacency matrices of the AST in (1). Then
H =

∑5
i=0 aiAi is a Hadamard cube of order n if and only if

(ai)
5
i=0 ∈ {1,−1}6 satisfies a0a1a2a3 = a4a5 = −1.

▶ If C =

[
0 1⊤

±1 χ(x− y)

]
where χ is the quadratic character of Fq and

x, y ∈ Fq, and (ai)
5
i=0 = (−1, 1, 1, 1, 1,−1), the resulting Hadamard

cube is the same as the one by Krčadinac, Pavčević, Tabak.

▶ A conference matrix of order n = 46 and thus a Hadamard cube of
order n = 46 exists, while n− 1 = 45 is not a prime power.

Sho Suda (National Defense Academy) Hadamard cubes from ASTs May 26, 2025 19 / 21



Remark

▶ ASTs are constructed from any regular two-graphs, that is, Seidel
matrices with only two-distinct eigenvalues, say ρ1, ρ2. For those
ASTs with eigenvalues ρ1 + ρ2 = ±2, Hadamard cubes are
constructed in the same way.

▶ “Weighing cubes” or “complex Hadamard cubes” may be constructed
in this way.
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Conclusion

Research Problems:

▶ No conference matrix exists for order n = 22, 34, or 58. How about
existence of Hadamard cubes of these orders? Is there any
non-existence result for Hadamard cubes?

▶ It would be interesting to check whether any other AST yields a
Hadamard cube or not.

▶ Define “association schemes on d-tuples” and find an example
d-dimensional Hadamard matrices which is a linear combination of
the adjacency matrices.

Thank you for your attention!
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