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Introduction and motivation

Switching in a (simple) graph means reversing the adjacencies of some
pairs of vertices, so that an adjacent pair becomes nonadjacent and a
nonadjacent pair becomes adjacent.

Switching methods have been successfully used for constructing and
studying strongly regular graphs - Seidel switching, Godsil-McKay
(GM) switching, Wang-Qiu-Hu (WQH) switching.

J. J. Seidel, Graphs and two-graphs, in: Proceedings of the Fifth Southeastern
Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1974), Congressus Numerantium X, Utilitas Math.,
Winnipeg, Man., 1974, 125–143.

C. D. Godsil, B. D. McKay, Constructing cospectral graphs, Aequationes Math. 25
(1982), 257–268.

W. Wang, L. Qiu and Y. Hu, Cospectral graphs, GM-switching and regular rational
orthogonal matrices of level p, Lin. Alg. Appl. 563 (2019), 154177.
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Introduction and motivation

Switching methods for strongly regular graphs have been used for
example:

A. Abiad, S. Butler, W. H. Haemers, Graph switching, 2-ranks, and
graphical Hadamard matrices, Discrete Math. 342 (2019), 2850–2855.

M. Behbahani, C. Lam, P. R. J. Österg̊ard, On triple systems and
strongly regular graphs, J. Combin. Theory Ser. A 119 (2012),
1414–1426.
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Introduction and motivation

Denniston used a method called switching ovals for a construction of
symmetric (25, 9, 3) designs.

R. H. F. Denniston, Enumeration of symmetric designs (25,9,3), in:
Algebraic and geometric combinatorics, North-Holland Math. Stud.
65, North-Holland, Amsterdam, 1982, 111–127.

Orrick defined switching operations for Hadamard matrices.

W. P. Orrick, Switching operations for Hadamard matrices, SIAM J.
Discrete Math. 22 (2008), 31–50.
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Introduction and motivation

The switching using Pasch configurations, so called Pasch switch, was
used for a construction of new Steiner triple systems from known ones.

P. B. Gibbons, Computing techniques for the construction and
analysis of block designs, Techn. Rept. # 92, Dept. Computer Sci.,
Univ. Toronto 92 (1976).

M. J. Grannell, T. S. Griggs, Pasch configuration, in: M. Hazewinkel
(Ed.), Encyclopaedia of Mathematic, Supplement III, Kluwer
Academic Publishers, 2001, 299–300.

Österg̊ard introduced a switching for codes and Steiner systems.

P. R. J. Österg̊ard, Switching codes and designs, Discrete Math. 312
(2012), 621–632.
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Introduction and motivation

Norton, Parker and Wanless used switching for a construction of Latin
squares.

H. W. Norton, The 7× 7 squares, Ann. Eugenics 9 (1939), 269–307.

E. T. Parker, Computer investigation of orthogonal Latin squares of
order ten, in: Proc. Sympos. Appl. Math. vol. XV, Amer. Math.
Soc., Providence, 1963, 73–81.

I. M. Wanless, Cycle switches in Latin squares, Graphs Combin. 20
(2004), 545–570.
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Introduction and motivation

Jungnickel and Tonchev used maximal arcs for a transformation of
quasi-symmetric designs that leads to a construction of new
quasi-symmetric designs i.e. switching.

D. Jungnickel, V. D. Tonchev, Exponential Number of
Quasi-Symmetric SDP Designs and Codes Meeting the Grey-Rankin
Bound, Des. Codes Cryptogr. 1 (1991), 247–253.

8 / 27



Switching for 2-designs and applications

Introduction and motivation

We introduced a switching that can be applied to 2-designs having a set
of blocks that satisfy certain conditions and show that in some cases the
switching can be directly apply to orbit matrices.

D. Crnković, A. Švob, Switching for 2-designs, Des. Codes Cryptogr.
90 (2022), 1585–1593.
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Switching for 2-designs

A t-(v , k , λ) design is a finite incidence structure D = (P,B, I) satisfying
the following requirements:

1 |P| = v ,

2 every element of B is incident with exactly k elements of P,

3 every t elements of P are incident with exactly λ elements of B.

Every element of P is incident with exactly r elements of B.

The number of blocks is denoted by b.

If b = v (or equivalently k = r) then the design is called symmetric.
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Switching for 2-designs

A 2-(v , k, λ) design is called a block design.

If D is a t-design, then it is also a s-design, for 1 ≤ s ≤ t − 1.

An incidence matrix of a design D is a matrix A = [aij ] where aij = 1
if jth point is incident with the ith block and aij = 0 otherwise.

Figure: 2-(7, 3, 1) design
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Switching for 2-designs

Switching set

Let D = (P,B, I) be a 2-design and let B1 ⊂ B be a set of blocks such
that there are sets of points P1,P2 ⊂ P with the following properties:

1 (P,B) /∈ I, for every (P,B) ∈ P1 × B1,

2 (P,B) ∈ I, for every (P,B) ∈ P2 × B1,

3 |{B ∈ B1 : (P,B) ∈ I}| = |{B ∈ B1 : (P,B) /∈ I}|, for every
P ∈ P\(P1 ∪ P2).

Then B1 is called a switching set of D.

b × v matrix:
0 1 0, 1


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Switching for 2-designs

If B1 is a switching set of a 2-(v , k , λ) design D = (P,B, I), we define an
incidence structure D1 = (P,B, I1) obtained from D by switching with
respect to B1 in the following way:

1 (P,B) ∈ I1 ⇔ (P,B) ∈ I, for B ∈ B\B1, P ∈ P,

2 (P,B) ∈ I1 ⇔ (P,B) ∈ I, for B ∈ B1, P ∈ P1 ∪ P2,

3 (P,B) ∈ I1 ⇔ (P,B) /∈ I, for B ∈ B1, P ∈ P\(P1 ∪ P2).

b × v matrix:
0 1 1,0


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Switching for 2-designs

Theorem 1 [D. Crnković, AŠ]

Let D = (P,B, I) be a 2-(v , k, λ) design. If B1 is a switching set of D
then the incidence structure D1 = (P,B, I1) obtained from D by
switching with respect to B1 is also a 2-(v , k , λ) design.

If a design D1 is obtained from D by switching with respect to B1, then D
can be obtained form D1 also by switching with respect to B1. If 2-designs
D and D1 can be obtained from each other by switching, then D and D1

are said to be switching-equivalent.
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Switching for 2-designs

If B1 is a switching set of a symmetric 2-design D, then the incident
structure with the point set B1 and the block set P\(P1 ∪ P2) is a
2-design which is a subdesign of the dual design of D.

Remark: If D is a block design, the incidence structure D′ having as points the blocks of

D, and having as blocks the points of D, where a point and a block are incident in D′ if

and only if the corresponding block and a point of D are incident, is a block design

called the dual of D. The dual design of a 2-design D is a 2-design if and only if D is

symmetric.
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Switching for 2-designs

The switching introduced in this talk defines a trade.

A trade for a 2-(v , k , λ) design consists of two disjoint sets of blocks with
the property that if the design contains the blocks of one of the sets, then
these blocks can be replaced by the blocks of the other set.

For example, if a design has a subdesign, then the subdesign can be
replaced by a disjoint subdesign with the same parameters.

16 / 27



Switching for 2-designs and applications

Applications

A Hadamard matrix of order m is an (m ×m)-matrix H = (hi ,j),
hi ,j ∈ {−1, 1}, satisfying HHT = HTH = mIm, where Im is the unit matrix
of order m.

A Hadamard matrix is regular if the row and column sums are constant. If
H is a regular Hadamard matrix, then the order of H is 4n2.

Symmetric (64,28,12) designs are related to regular Hadamard matrices of
order 64.
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Applications

By applying Theorem 1 we obtained 3 new symmetric (64, 28, 12) designs
(without use of computer) from designs constructed in the paper:

D. Crnković, M.-O. Pavčević, Some new symmetric designs with
parameters (64,28,12), Discrete Math. 237, No. 1-3 (2001), 109–118.

The switching sets were determined by orbits of the group Z7 i.e.
producing the orbit matrix M ′

3.
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Applications

Any of the last five orbits for Z7 of the designs D27, D28 and D29

from the paper by D. Crnković and M.-O. Pavčević, together with the
fixed block, form a switching set of size 8.

M′
3 1 7 7 7 7 7 7 7 7 7
1 0 7 7 7 7 0 0 0 0 0
7 1 4 4 4 0 3 3 3 3 3
7 1 4 4 0 4 3 3 3 3 3
7 1 4 0 4 4 3 3 3 3 3
7 1 0 4 4 4 3 3 3 3 3
7 0 3 3 3 3 4 0 4 4 4
7 0 3 3 3 3 0 4 4 4 4
7 0 3 3 3 3 4 4 4 4 0
7 0 3 3 3 3 4 4 0 4 4
7 0 3 3 3 3 4 4 4 0 4

By switching, from each of the designs D27, D28 and D29 we obtain,
up to isomorphism, one new design denoted by D′

27, D′
28 and D′

29,
respectively, which are pairwise non-isomorphic.
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Applications

Remarks:

While the designs D27, D28 and D29 are self-dual, the newly obtained
designs D′

27, D′
28 and D′

29 are not self-dual, and together with their
duals give us six designs that are not isomorphic to the designs
obtained before.

The full automorphism group of D′
27 is isomorphic to Z7 × Z2, and

the full automorphism groups of D′
28 and D′

29 are isomorphic to Z7.

While the designs D27, D28 and D29 have 2-rank equal to 26, the
2-rank of any of the design D′

28 and D′
29 is 27.
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Applications

A Bush-type Hadamard matrix of order 4n2 is a Hadamard matrix with
the additional property of being a block matrix H = [Hi ,j ] with blocks of
size 2n × 2n, such that Hi ,i = J2n and Hi ,jJ2n = J2nHi ,j = 0, i ̸= j ,
1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n, where J2n is the all-ones (2n × 2n)-matrix.

A Hadamard matrix is regular if the row and column sums are constant. If
H is a regular Hadamard matrix, then the order of H is 4n2. Obviously,
Bush-type Hadamard matrices are regular.
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Applications

H. Kharaghani showed that a Bush-type Hadamard matrix of order 4n2 with
2n − 1 or 2n + 1 a prime power, can be used to construct infinite classes of
symmetric designs.

Janko and Kharaghani constructed strongly regular graphs with parameters
(936, 375, 150, 150) and (1800, 1029, 588, 588) from a block negacyclic Bush-type
Hadamard matrix of order 36.

H. Kharaghani showed that Bush-type Hadamard matrices of order 16n2 exist for
all values of n for which a Hadamard matrix of order 4n exists.

M. Muzychuk and Q. Xiang gave a construction of Bush-type Hadamard matrices
of order 4n4 for any odd n.
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Applications

It is very difficult to decide whether Bush-type Hadamard matrices of order
4n2 exist if n is an odd prime.
Bush-type Hadamard matrices of order 4n2, where n is an odd prime, have
been constructed for n = 3, 5.

Z. Janko, The existence of a Bush-type Hadamard matrix of order 36 and two new
infinite classes of symmetric designs, J. Combin. Theory Ser. A 95 (2001),
360–364.

Z. Janko, H. Kharaghani, A block negacyclic Bush-type Hadamard matrix and two
strongly regular graphs, J. Combin. Theory Ser. A 98 (2002), 118–126.

Z. Janko, H. Kharaghani, V. D. Tonchev, Bush-type Hadamard matrices and
symmetric designs, J. Combin. Des. 9 (2001), 72–78.

D. Crnković, D. Held, Some new Bush-type Hadamard matrices of order 100 and
infinite classes of symmetric designs, J. Combin. Math. Combin. Comput. 47
(2003), 155–164.
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Applications

The switching introduced in this talk can be applied to any symmetric
design obtained from a Bush-type Hadamard matrix.

The six diagonal blocks of the block negacyclic Bush-type
Hadamard matrix of order 36 constructed by Janko and Kharaghani
determine six switching sets of the corresponding Menon design, and
switching leads us to 64 pairwise non-isomorphic symmetric
(36, 15, 6) designs (including the starting one).

These 64 designs correspond to 14 equivalence classes of Bush-type
Hadamard matrices of order 36.
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Applications

The ten diagonal blocks of the Bush-type Hadamard matrix
constructed by Janko, Kharaghani and Tonchev determine ten
switching sets of the corresponding design, and switching leads us to
1024 symmetric (100, 45, 20) designs (including the starting one).

In total, 208 of these 1024 designs are pairwise non-isomorphic,
leading to 120 equivalence classes of Bush-type Hadamard matrices of
order 100.
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Applications

Conclusion:

we obtain six new symmetric (64,28,12) designs,

we construct 86 pairwise non-isomorphic symmetric (36, 15, 6) designs
leading to 28 new pairwise nonequivalent Bush-type Hadamard
matrices of order 36,

we construct 207 pairwise non-isomorphic symmetric (100, 45, 20)
designs leading to 119 pairwise nonequivalent Bush-type Hadamard
matrices of order 100.

Remarks:

Examples show that the switching does not preserve the p-rank of a
2-design (in case when p divides the order of the design), and also
does not preserve the self-duality of a symmetric design.

The switching does not preserve the action of an automorphism group
of a 2-design.
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Applications

Muchas gracias por su atención!
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