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Cretan matrices

A Cretan matrix is a square matrix S such that

1. its elements satisfy

2. at least one element in each row and column is equal to 1;
3. and
SST =wl for some w.

If the elements of S have 7 different values (levels), S is called a
7-level Cretan matrix.



Cretan matrices

A Cretan matrix is a square matrix S such that

1. its elements satisfy

2. at least one element in each row and column is equal to 1;
3. and
SST =wl for some w.

If the elements of S have 7 different values (levels), S is called a
7-level Cretan matrix.

Remark. Cretan matrices with a small number of levels are of
interest.

Remark. The notion Cretan matrix was introduced after a conference in Crete
in 2014 (N. A. Balonin, M. B. Sergeev, J. Seberry).



2-level Cretan matrices

Theorem (Seberry and Balonin 2015). The existence of a 2-level
Cretan matrix of order 4n — 1 is equivalent to the existence of a
Hadamard matrix of order 4t.



2-level Cretan matrices

Theorem (Seberry and Balonin 2015). The existence of a 2-level
Cretan matrix of order 4n — 1 is equivalent to the existence of a
Hadamard matrix of order 4t.

Proof (sketch).
Hadamard matrix H of order 4t
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Replacing 1's and —1's in B by values y = %{ﬂ and 1,
respectively, gives a Cretan matrix.



Cretan matrices

» Hadamard matrices

hj € {1,—-1} forall i,j
HHT = nI

» conference matrices
0 fori=j
Cij = . .
+1 for i #;
CCT =(n-1)I
> weighing matrices

wij € {0,1,—-1} forall i,
WWT =wl  (w - weight of W)



Complex Cretan matrices

A complex Cretan matrix is a square matrix S such that
1. |sij| <1 forall i,j;
2. at least one element in each row and column has modulus 1;

3. SST = wl for some w.

» complex Hadamard matrices: |h;| =1 for all i, ;

HH* = nl
. 0 fori=yj;
» complex conference matrices: |cjj| = -7
1 fori#j;

cCc* = (n—1)I



Circulant matrix

A circulant matrix is a square matrix of the form

(&)] C1 vt Cp—2 Cp-1
Cn—1 <o 1 Ch—2
C= Ch—1 Qo
() L e c1
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Circulant matrix

A circulant matrix is a square matrix of the form

(o) C1 trr Cp—2 Cp—1
Cn—1 <o 1 Ch—2
C= Ch—1 Qo
o .. a
(5] (0) o Cp—1 <0

Notation:
C = circp(co, €1y -+ -y Cn—2, Cn—1)



Circulant matrices with real entries



Hadamard circulant matrices
Hadamard circulant conjecture (Ryser 1963):

Hadamard circulant matrices exist only of order n = 4 and
(trivially) n = 1.

Examples:
-1 1 1 1 1 -1 1 1
1 -1 1 1 1 1 -1 1
+ 1 1 -1 1 ’ + 1 1 1 -1
1 1 1 -1 -1 1 1 1
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Hadamard circulant matrices
Hadamard circulant conjecture (Ryser 1963):

Hadamard circulant matrices exist only of order n = 4 and
(trivially) n = 1.

Examples:
-1 1 1 1 1 -1 1 1
1 -1 1 1 1 1 -1 1
+ 1 1 -1 1 ’ + 1 1 1 -1
1 1 1 -1 -1 1 1 1

Hadamard circulant conjecture is known to be true for symmetric
matrices (Johnsen 1964, Brualdi and Newman 1965, McKay and
Wang 1987, Craigen and Kharagani 1993).

Remark. A similar statement is proved for complex Hermitian
matrices with entries in {1,—1,1, —i} (Craigen and Kharagani
1993).



Circulant conference matrices

Theorem (Stanton and Mullin 1976).

A circulant conference matrix, i.e.,
C = circy(0, £1,£1,...,£1)  (n>1)

such that
CCT =(n—1)I

exists only for n = 2.

Solutions: 0 1 0 -1
et o) -1 oo



General diagonal

d &1 't G2 Cp-1
-1 d a Cn—2
C= : cho1 d . : = circy(d, c1, - - -
() . R c1
C1 Co s Ch—1 d

with n > 1 such that

¢ ef{c,—c} forallj=1,...,n—-1,
CCT =wl  (w=d?>+(n—1)c3).

...a 3-level (or 2-level) Cretan matrix

y Cn—l)
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Without loss of generality: ¢; € {1,—1}, d > 0; we allow d > 1




General diagonal

d €1 ' G2 Cn-1
-1 d «a Ch—2
C= : Ccho1 d - : = circy(d, c1y .-y Cno1)
() . R c1
C1 Co s Ch—1 d

with n > 1 such that

¢ ef{c,—c} forallj=1,...,n—-1,
CCT =wl  (w=d?>+(n—1)c3).
...a 3-level (or 2-level) Cretan matrix

Without loss of generality: ¢; € {1,—1}, d > 0; we allow d > 1

Remark. d =0, d = 1: circulant conference/Hadamard matrix
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General diagonal
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General diagonal
Theorem (T. and Goyeneche 2019). Consider
C = cirep(d, +1,£1, ..., +1)
with n > 1 such that
CCT = (d?*+n-1)I.

We have:
> 2d is not integer =  C does not exist
(easy to see from the orthogonality of rows)
» 2disodd = Cexistsiff n=2d+2
(orthogonality = C = circy(d, —1,...,—1) = n=2d+2=0)
> diseven = C(Cexistsiffn=2d+2
(orthogonality = C is symmetric, n =2d + 2 = 0)

Remark. Choice d = 0 gives the result by Stanton and Mullin.



General diagonal: symmetric C
Theorem (T. and Goyeneche 2019). A symmetric circulant matrix
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General diagonal: symmetric C
Theorem (T. and Goyeneche 2019). A symmetric circulant matrix

C =circp(d, £1,+1,...,+1)
with n > 1 such that
CCT =(d?>+n—-1)I
exists only for n = 2d + 2.

Proof (sketch). It suffices to consider the case d = odd integer.

1. disodd = n=k(2d + k)+ 1 for some k € N
2. We prove | n=pipy?---pfr = k+1<2"

3. k>2" = k+1>2" = no solution for k > 27

4. k <2" k41 <2 is satisfied in only 2 cases:
k=7,n=120; k=13,n= 924

5. k =7,n=120: no solution
k = 13, n = 924: no solution



General diagonal: conjecture

Unresolved case: d is odd and C is not symmetric
Conjecture. Let
C =cirep(d, £1,£1,...,£1)
with n > 1 such that
CCT = (d?*+n—-1)I.

For any d > 0, C exists only for n = 2d + 2.



General diagonal: conjecture

Unresolved case: d is odd and C is not symmetric
Conjecture. Let
C =circp(d, £1,+1,...,+1)
with n > 1 such that
CCT = (d?*+n—-1)I.
For any d > 0, C exists only for n = 2d + 2.

Remark. The conjecture is in agreement with results for even d, for
symmetric C, and with Hadamard circulant conjecture
(d=1= n=24).



General diagonal: all solutions for n = 2d + 2
We don't know whether there is a solution with n #£ 2d + 2.
— If there is, d must be odd and C cannot be symmetric.

However, we have a complete description of matrices satisfying
n=2d+ 2.



General diagonal: all solutions for n = 2d + 2

We don't know whether there is a solution with n #£ 2d + 2.
— If there is, d must be odd and C cannot be symmetric.

However, we have a complete description of matrices satisfying
n=2d+ 2.

Theorem (T. and Goyeneche 2019). Every real matrix
C =circp(d, £1,£1,...,£1)

such that
CCT = (d*+n—1)I

has its first row of one of the forms below:

(d7 ’ ) ’ )

(d,1, 1,1, 1,...,1, 1,1)

(d,1,1, 1, 1,1,1, 1, 1,...,1,1, 1)
(d, 1,1,1, 1, 1,1,1,..., 1, 1,1,1)



Matrices with complex entries
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Remark. 1-level: (1), (—1)
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2- and 3-level Hermitian circulant matrices
Remark. 1-level: (1), (—1)

Observation. All Hermitian circulant 2-level Cretan matrices are real.

Proof. ¢ ¢ R = at least 3 levels: ¢, ¢j, G

Observation. Let n = 4k. The matrix

C = circy(co, €1y -+, Cn—1)
with the entries
2 : n . 3n
= for j# 7 and j # 7
R 4— i —
G=1%+} fori=]
4—n i +__ 3n
o 2 forj=7%

is a (multiple of a) 3-level Hermitian Cretan matrix.



2- and 3-level Hermitian circulant matrices
Remark. 1-level: (1), (—1)

Observation. All Hermitian circulant 2-level Cretan matrices are real.

Proof. ¢ ¢ R = at least 3 levels: ¢, ¢j, G

Observation. Let n = 4k. The matrix

C = circy(co, €1y -+, Cn—1)
with the entries
2 : © .3
= for j# 7 and j # 7
A 4—n i r_n
=% +t3 forj=3
4—n i +__ 3n
o 2 forj=7%

is a (multiple of a) 3-level Hermitian Cretan matrix.

Remark. Other examples of 3-level Hermitian circulant Cretan
matrices can be constructed from combinatorial designs. (Full
classification is in progress.)



Complex matrices with fourth roots of unity
Theorem (Craigen and Kharaghani 1993). A Hermitian circulant

complex Hadamard matrix with entries in {1, —1,i, —i} exists only
of order n =4 (and n = 1).



Complex matrices with fourth roots of unity

Theorem (Craigen and Kharaghani 1993). A Hermitian circulant
complex Hadamard matrix with entries in {1, —1,i, —i} exists only
of order n =4 (and n=1).

Theorem (Uzcategui Contreras et al. 2021). Consider a Hermitian
circulant matrix

C =circy(d, c1,¢2,...,¢n—1) (n>1)
with ¢; € {1,—1,i, —i} forall j=1,...,n— 1 such that
CC* = (d° +n—1)I.
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Complex matrices with fourth roots of unity

Theorem (Craigen and Kharaghani 1993). A Hermitian circulant
complex Hadamard matrix with entries in {1, —1,i, —i} exists only
of order n =4 (and n=1).

Theorem (Uzcategui Contreras et al. 2021). Consider a Hermitian
circulant matrix
C =circy(d, c1,¢2,...,¢n—1) (n>1)
with ¢; € {1,—1,i, —i} forall j=1,...,n— 1 such that
CC* = (d° +n—1)I.
We have:
> dis not integer = C exists only of order n = 2d + 2;

» diseven = C exists only of order n = 2d + 2.
Moreover, C is real and takes one of the two forms below:

circy(d,—1,-1,...,-1)
ciren(d,1,-1,1,-1,...,1,—1,1)



Complex matrices with fourth roots of unity

Theorem (Uzcategui Contreras et al. 2021). Let d be odd. If the
conjecture

“A circulant matrix C = circp(d, £1,£1,...,+1,+1) withn > 1
such that CCT = (d? + n— 1)/ exists only if n = 2d + 2"

is true, then a Hermitian circulant matrix
C = circp(d, c1, ¢, ..., cp—1) with n > 1 such that

cl,...,coo1 €{1,-1,i,—i} and CC* = (d*+n—1)I

exists only of order n = 2d + 2.



Complex matrices with fourth roots of unity

Theorem (Uzcategui Contreras et al. 2021). Let d be odd. If the
conjecture

“A circulant matrix C = circp(d, £1,£1,...,+1,+1) withn > 1
such that CCT = (d? + n— 1)/ exists only if n = 2d + 2"

is true, then a Hermitian circulant matrix
C = circp(d, c1, ¢, ..., cp—1) with n > 1 such that

cl,...,coo1 €{1,-1,i,—i} and CC* = (d*+n—1)I

exists only of order n = 2d + 2. Moreover, C takes one of the
forms below:

circp(d, ~ 1, 1,..., 1)
circp(d,1, 1,1, -1,1,...,-1,1)
circy(d, 1,1, —1, — 1,1, 1, —i, —1,...,i,1,—1)

cirep(d, —i, 1,1, —1,—1, 1,1, —1,...,—1,1,i)
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Thank you for your attention!



