On higher-dimensional Hadamard matrices and designs

Vedran Krčadinac

University of Zagreb, Croatia

Joint work with Mario Osvin Pavčević, Lucija Relić and Kristijan Tabak

8th Workshop on Design Theory, Hadamard Matrices and Applications 26-30 May, 2025, Sevilla, Spain

An *n*-dimensional matrix of order *v* with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,v\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1 \leq i_1, \dots, \widehat{i_j}, \dots, i_n \leq v} H(i_1, \dots, a, \dots, i_n) H(i_1, \dots, b, \dots, i_n) = v^{n-1} \delta_{ab}$$

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,v\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1\leq i_1,\ldots,\widehat{i_j},\ldots,i_n\leq v}H(i_1,\ldots,a,\ldots,i_n)H(i_1,\ldots,b,\ldots,i_n)=v^{n-1}\delta_{ab}$$

• is proper Hadamard, if all 2-dim. sections are Hadamard matrices

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,v\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1 \leq i_1, \dots, \widehat{i_j}, \dots, i_n \leq v} H(i_1, \dots, a, \dots, i_n) H(i_1, \dots, b, \dots, i_n) = v^{n-1} \delta_{ab}$$

• is proper Hadamard, if all 2-dim. sections are Hadamard matrices

Paul J. Shlichta, *Three- and four-dimensional Hadamard matrices*, Bull. Amer. Phys. Soc. **16 (8)** (1971), 825–826.

Paul J. Shlichta, *Higher dimensional Hadamard matrices*, IEEE Trans. Inform. Theory **25** (1979), no. 5, 566–572.

An *n*-dimensional matrix of order *v* with $\{-1,1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1\leq i_1,\ldots,\widehat{i_j},\ldots,i_n\leq v}H(i_1,\ldots,a,\ldots,i_n)H(i_1,\ldots,b,\ldots,i_n)=v^{n-1}\delta_{ab}$$

• is proper Hadamard, if all 2-dim. sections are Hadamard matrices

J. Seberry, *Higher-dimensional orthogonal designs and Hadamard matrices*, Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ. Newcastle, Newcastle, 1979), pp. 220–223, Springer, Berlin, 1980.

J. Hammer, J. Seberry, *Higher-dimensional orthogonal designs and Hadamard matrices II*, Proc. Ninth Manitoba Conference on Numerical Mathematics and Computing, pp. 23–29, Congress. Numer. XXVII, Utilitas Math., Winnipeg, 1980.

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1 \leq i_1, \dots, \widehat{i_j}, \dots, i_n \leq \nu} H(i_1, \dots, a, \dots, i_n) H(i_1, \dots, b, \dots, i_n) = \nu^{n-1} \delta_{ab}$$

- is proper Hadamard, if all 2-dim. sections are Hadamard matrices
- is Filmus-Gnang Hadamard (FGH), if

$$\left[\operatorname{Prod}\left(H, H^{\tau^{n-1}}, \dots, H^{\tau^2}, H^{\tau}\right)\right]_{i_1, \dots, i_n} = \begin{cases} v, & \text{if } i_1 = \dots = i_n, \\ 0, & \text{otherwise.} \end{cases}$$

E. K. Gnang, Y. Filmus, *On the spectra of hypermatrix direct sum and Kronecker products constructions*, Linear Algebra Appl. **519** (2017), 238–277.

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1 \leq i_1, \dots, \widehat{i_j}, \dots, i_n \leq \nu} H(i_1, \dots, a, \dots, i_n) H(i_1, \dots, b, \dots, i_n) = \nu^{n-1} \delta_{ab}$$

- is proper Hadamard, if all 2-dim. sections are Hadamard matrices
- is Filmus-Gnang Hadamard (FGH), if

$$\left[\operatorname{Prod}\left(H, H^{\tau^{n-1}}, \dots, H^{\tau^2}, H^{\tau}\right)\right]_{i_1, \dots, i_n} = \begin{cases} v, & \text{if } i_1 = \dots = i_n, \\ 0, & \text{otherwise.} \end{cases}$$

D. M. Mesner, P. Bhattacharya, *A ternary algebra arising from association schemes on triples*, J. Algebra **164** (1994), no. 3, 595–613.

An *n*-dimensional matrix of order v with $\{-1, 1\}$ -entries

$$H: \{1,\ldots,\nu\}^n \to \{-1,1\}$$

• is Hadamard, if all (n-1)-dim. parallel sections are orthogonal:

$$\sum_{1\leq i_1,\ldots,\widehat{i_j},\ldots,i_n\leq v} H(i_1,\ldots,a,\ldots,i_n)H(i_1,\ldots,b,\ldots,i_n) = v^{n-1}\delta_{ab}$$

- is proper Hadamard, if all 2-dim. sections are Hadamard matrices
- is Filmus-Gnang Hadamard (FGH), if $\left[\operatorname{Prod}\left(H, H^{\tau^{n-1}}, \dots, H^{\tau^2}, H^{\tau}\right)\right]_{i_1, \dots, i_n} = \begin{cases} v, & \text{if } i_1 = \dots = i_n, \\ 0, & \text{otherwise.} \end{cases}$

D. M. Mesner, P. Bhattacharya, *A ternary algebra arising from association schemes on triples*, J. Algebra **164** (1994), no. 3, 595–613.

A Hadamard matrix

n = 2, v = 4

$$\left[\begin{array}{rrrrr} - & 1 & 1 & 1 \\ 1 & - & 1 & 1 \\ 1 & 1 & - & 1 \\ 1 & 1 & 1 & - \end{array}\right]$$

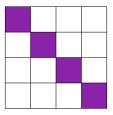
V. Krčadinac (University of Zagreb)

▶ ◀ ≣ ▶ ≣ ∽ ९ 0 May 26, 2025 7/38

イロト イヨト イヨト イヨト

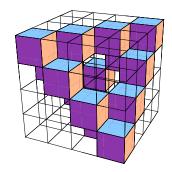
A Hadamard matrix

n = 2, v = 4



イロト イヨト イヨト イヨト

A three-dimensional proper Hadamard matrix

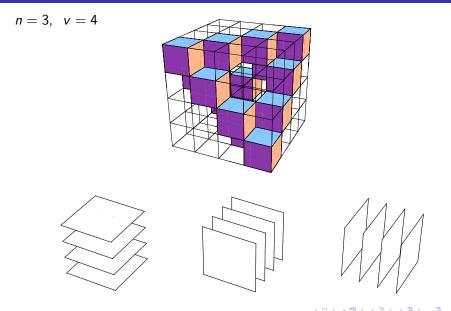


n = 3, v = 4

→ < Ξ →</p>

Image: Image:

A three-dimensional proper Hadamard matrix



Do they exist for all orders $v \equiv 0 \pmod{4}$ and dimensions $n \ge 2$?

Do they exist for all orders $v \equiv 0 \pmod{4}$ and dimensions $n \geq 2$?

Yi Xian Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The University of Sidney, 1987.

Do they exist for all orders $v \equiv 0 \pmod{4}$ and dimensions $n \geq 2$?

Yi Xian Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The University of Sidney, 1987.

Theorem ("Product construction")

Let $h: \{1, ..., v\}^2 \to \{-1, 1\}$ be a 2-dimensional Hadamard matrix of order v. Then $H(i_1, ..., i_n) = \prod_{i=1}^{n} h(i_i, i_n)$

$$H(i_1,\ldots,i_n) = \prod_{1 \le j < k \le n} h(i_j,i_k)$$

is an n-dimensional proper Hadamard matrix of order v.

Do they exist for all orders $v \equiv 0 \pmod{4}$ and dimensions $n \geq 2$?

Yi Xian Yang, *Proofs of some conjectures about higher-dimensional Hadamard matrices* (Chinese), Kexue Tongbao **31** (1986), no. 2, 85–88.

Warwick de Launey, (O, G)-designs and applications, PhD thesis, The University of Sidney, 1987.

Theorem ("Product construction")

Let $h : \{1, ..., v\}^2 \to \{-1, 1\}$ be a 2-dimensional Hadamard matrix of order v. Then $H(i_1, ..., i_n) = \prod h(i_i, i_k)$

$$H(i_1,\ldots,i_n) = \prod_{1 \le j < k \le n} h(i_j,i_k)$$

is an n-dimensional proper Hadamard matrix of order v.

Proof. All 2-dimensional slices of H are equivalent to h.

Other types of combinatorial designs: symmetric block designs (SBIBDs), orthogonal designs, (generalized) weighing matrices...

Other types of combinatorial designs: symmetric block designs (SBIBDs), orthogonal designs, (generalized) weighing matrices...

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin. **1** (1990), 67–81.

"Proper *n*-dimensional transposable designs"

Other types of combinatorial designs: symmetric block designs (SBIBDs), orthogonal designs, (generalized) weighing matrices...

W. de Launey, *On the construction of n-dimensional designs from* 2-*dimensional designs*, Australas. J. Combin. **1** (1990), 67–81.

"Proper *n*-dimensional transposable designs"

K. J. Horadam, W. de Launey, *Cocyclic development of designs*, J. Algebraic Combin. **2** (1993), no. 3, 267–290.

Other types of combinatorial designs: symmetric block designs (SBIBDs), orthogonal designs, (generalized) weighing matrices...

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin. **1** (1990), 67–81.

"Proper *n*-dimensional transposable designs"

K. J. Horadam, W. de Launey, *Cocyclic development of designs*, J. Algebraic Combin. **2** (1993), no. 3, 267–290.

W. de Launey, D. Flannery, *Algebraic design theory*, American Mathematical Society, Providence, 2011.

Chapter 11: Origins of cocyclic development

Other types of combinatorial designs: symmetric block designs (SBIBDs), orthogonal designs, (generalized) weighing matrices...

W. de Launey, On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. Combin. **1** (1990), 67–81.

"Proper *n*-dimensional transposable designs"

K. J. Horadam, W. de Launey, *Cocyclic development of designs*, J. Algebraic Combin. **2** (1993), no. 3, 267–290.

W. de Launey, D. Flannery, *Algebraic design theory*, American Mathematical Society, Providence, 2011.

Chapter 11: Origins of cocyclic development

V. Krčadinac, M. O. Pavčević, K. Tabak, *Cubes of symmetric designs*, Ars Math. Contemp. **25** (2025), no. 1, #P1.10.

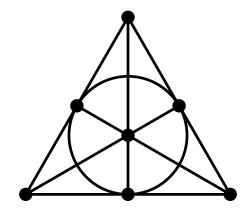
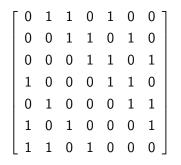


Image: A mathematical states and a mathem



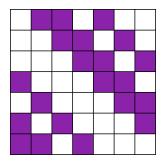
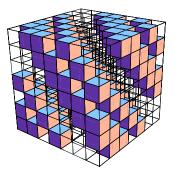


Image: A mathematical states and a mathem

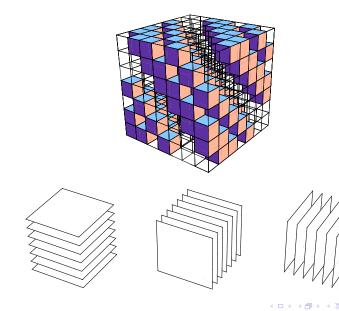
A three-dimensional Fano cube



3

• • • • • • • • • • • •

A three-dimensional Fano cube



Theorem ("Difference cubes")

If D is a (v, k, λ) difference set in $G = \{g_1, \dots, g_v\}$, then

$$A(i_1,\ldots,i_n)=[g_{i_1}+\ldots+g_{i_n}\in D]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Theorem ("Difference cubes")

If D is a (v, k, λ) difference set in $G = \{g_1, \dots, g_v\}$, then

$$\mathsf{A}(i_1,\ldots,i_n)=[g_{i_1}+\ldots+g_{i_n}\in D]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Proof. All 2-dimensional slices of A are incidence matrices of dev D.

Theorem ("Difference cubes")

If D is a (v, k, λ) difference set in $G = \{g_1, \dots, g_v\}$, then $A(i_1, \dots, i_n) = [g_{i_1} + \dots + g_{i_n} \in D]$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Proof. All 2-dimensional slices of A are incidence matrices of dev D.

Questions:

Are there cubes of symmetric designs not coming from this theorem? ("non-difference cubes")

Theorem ("Difference cubes")

If D is a (v, k, λ) difference set in $G = \{g_1, \dots, g_v\}$, then $A(i_1, \dots, i_n) = [g_{i_1} + \dots + g_{i_n} \in D]$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Proof. All 2-dimensional slices of A are incidence matrices of dev D.

Questions:

- Are there cubes of symmetric designs not coming from this theorem? ("non-difference cubes")
- ② Are there cubes of symmetric designs with inequivalent slices?

Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i + D$, i.e. the family is the development of a single D

Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i + D$, i.e. the family is the development of a single D

$$D = \{0, 1, 4, 14, 16\} \subseteq \mathbb{Z}_{21}$$

 $D_i = i + D, \ i = 0, \dots, 20$

Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

Usually: $D_i = g_i + D$, i.e. the family is the development of a single D

 $D = \{0, 1, 4, 14, 16\} \subseteq \mathbb{Z}_{21}$ $D_i = i + D, \ i = 0, \dots, 20$

A 3-cube of (21, 5, 1) designs (projective planes of order 4)

Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

$$G = \langle a, b \mid a^{3} = b^{7} = 1, \ ba = ab^{2} \rangle$$
$$D_{1} = \{1, a, b, b^{3}, a^{2}b^{2}\}$$
$$D_{2} = \{a^{2}b^{6}, b^{6}, a^{2}b^{3}, a^{2}b^{4}, a\}$$
$$D_{3} = \{1, a^{2}, ab, b^{2}, b^{6}\}$$
$$\vdots$$
$$D_{21} = \{a^{2}b^{2}, ab^{3}, ab^{5}, b^{6}, ab^{6}\}$$

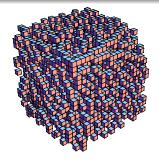
Theorem (V.K., M. O. Pavčević, K. Tabak: "Group cubes")

If $\{D_1, \ldots, D_v\}$ are the blocks of a symmetric (v, k, λ) design, and each D_i is a (v, k, λ) difference set in $G = \{g_1, \ldots, g_v\}$, then

$$A(i_1,...,i_n) = [g_{i_2} + ... + g_{i_n} \in D_{i_1}]$$

is an *n*-dimensional cube of symmetric (v, k, λ) designs.

$$G = \langle a, b \mid a^{3} = b^{7} = 1, \ ba = ab^{2} \rangle$$
$$D_{1} = \{1, a, b, b^{3}, a^{2}b^{2}\}$$
$$D_{2} = \{a^{2}b^{6}, b^{6}, a^{2}b^{3}, a^{2}b^{4}, a\}$$
$$D_{3} = \{1, a^{2}, ab, b^{2}, b^{6}\}$$
$$\vdots$$
$$D_{21} = \{a^{2}b^{2}, ab^{3}, ab^{5}, b^{6}, ab^{6}\}$$



For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

Example: m = 2, (16, 6, 2)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

Example: m = 2, (16, 6, 2)

There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

Example: m = 2, (16, 6, 2)

There are three (16, 6, 2) designs:

 $|\operatorname{Aut}(\mathcal{D}_1)| = 11520, |\operatorname{Aut}(\mathcal{D}_2)| = 768, |\operatorname{Aut}(\mathcal{D}_3)| = 384$

Red design, Green design, Blue design

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2^4: \quad \mathcal{D}_1 = \{ \mathcal{D}_1, \dots, \mathcal{D}_{16} \}$

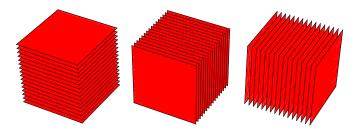
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2^4: \quad \mathcal{D}_1 = \{ \mathcal{D}_1, \dots, \mathcal{D}_{16} \}$



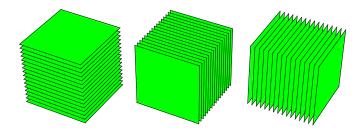
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2 \times C_8$: $D_2 = \{D_1, \dots, D_{16}\}$



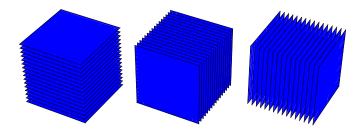
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2 \times Q_8$: $D_3 = \{D_1, \dots, D_{16}\}$



For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2^4: \quad \mathcal{D}_2 = \{ D_1, \dots, D_{16} \}$

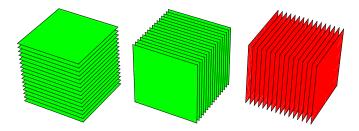
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2^4$: $D_2 = \{D_1, \dots, D_{16}\}$



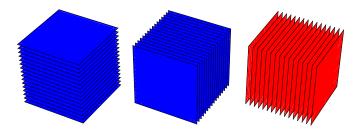
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2^4: \quad \mathcal{D}_3 = \{\mathcal{D}_1, \dots, \mathcal{D}_{16}\}$



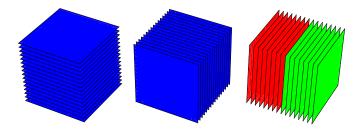
Theorem (V.K., M. O. Pavčević, K. Tabak)

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2 \times C_8$: $\mathcal{D}_3 = \{D_1, \dots, D_8, D_9, \dots, D_{16}\}$

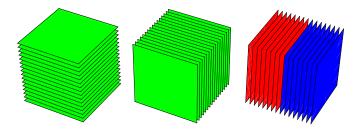


For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

 $G = C_2 \times Q_8$: $D_2 = \{D_1, \dots, D_8, D_9, \dots, D_{16}\}$



For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

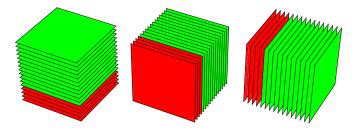
Question: Are there non-group cubes?

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

Question: Are there non-group cubes?



For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

Question: Are there non-group cubes?

Proposition.

Up to equivalence, the set $C^3(16, 6, 2)$ contains exactly 27 difference cubes and 946 non-difference group cubes. Furthermore, it contains at least 1423 inequivalent non-group cubes.

For every $m \ge 2$ and $n \ge 3$, there are *n*-cubes of symmetric

$$(4^m, 2^{m-1}(2^m-1), 2^{m-1}(2^{m-1}-1))$$

designs that are group cubes, but not difference cubes.

The parameters are of Menon type: $(4u^2, 2u^2 - u, u^2 - u)$

By exchanging $0 \rightarrow -1$, the cubes are transformed to *n*-dimensional proper Hadamard matrices with inequivalent slices!

● There are exactly 78 symmetric (25,9,3) designs, but no difference sets. Are there cubes of (25,9,3) designs of dimension n ≥ 3?

- There are exactly 78 symmetric (25,9,3) designs, but no difference sets. Are there cubes of (25,9,3) designs of dimension n ≥ 3?
- ② Are there non-group cubes of (15,7,3) designs? Are there any non-group cubes for (v, k, λ) ≠ (16,6,2)?

- There are exactly 78 symmetric (25,9,3) designs, but no difference sets. Are there cubes of (25,9,3) designs of dimension n ≥ 3?
- ② Are there non-group cubes of (15, 7, 3) designs? Are there any non-group cubes for $(v, k, \lambda) \neq (16, 6, 2)$?
- Is there a product construction for cubes of symmetric designs?

- There are exactly 78 symmetric (25,9,3) designs, but no difference sets. Are there cubes of (25,9,3) designs of dimension n ≥ 3?
- ② Are there non-group cubes of (15, 7, 3) designs? Are there any non-group cubes for $(v, k, \lambda) \neq (16, 6, 2)$?

Is there a product construction for cubes of symmetric designs?

Hadamard matrices coming from Menon designs are of square orders. Are there *n*-dimensional proper Hadamard matrices with inequivalent slices of non-square orders?

A forgotten success story: Room squares

T. G. Room, *A new type of magic square*, Math. Gaz. **39** (1955), 307. Thomas Gerald Room

From Wikipedia, the free encyclopedia

Thomas Gerald Room FRS FAA (10 November 1902 – 2 April 1986) was an Australian mathematician who is best known for Room squares. He was a Foundation Fellow of the Australian Academy of Science.^{[1][2]}

A forgotten success story: Room squares

T. G. Room, *A new type of magic square*, Math. Gaz. **39** (1955), 307. Thomas Gerald Room

From Wikipedia, the free encyclopedia

Thomas Gerald Room FRS FAA (10 November 1902 – 2 April 1986) was an Australian mathematician who is best known for Room squares. He was a Foundation Fellow of the Australian Academy of Science.^{[1][2]}

Let S be a set of v + 1 elements, say $S = \{\infty, 1, 2, ..., v\}$. A Room square of order v is a $v \times v$ matrix M such that:

- the entries of M are empty or 2-element subsets of S
- each 2-subset of S appears once in M
- elements of S appear once in every row and column of M

Example.

$$v = 7$$

$\infty 1$			26		57	34
45	$\infty 2$			37		16
27	56	∞ 3			14	
	13	67	$\infty 4$			25
36		24	17	$\infty 5$		
	47		35	12	$\infty 6$	
		15		46	23	$\infty 7$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example.

$$v = 7$$

$\infty 1$			26		57	34
45	$\infty 2$			37		16
27	56	∞ 3			14	
	13	67	∞ 4			25
36		24	17	$\infty 5$		
	47		35	12	$\infty 6$	
		15		46	23	$\infty 7$

Theorem.

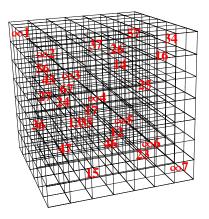
Room squares of order v exists if and only if v is odd and $v \neq 3, 5$.

Proof: 1955–1973.

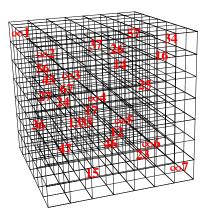
.

A Room cube is an *n*-dimensional matrix of order *v* with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

A Room cube is an *n*-dimensional matrix of order *v* with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.



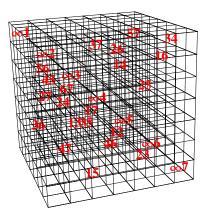
A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.



Front view:

∞1	56	24		37		
	∞2	67	35		14	
		∞3	17	46		25
36			∞4	12	57	
	47			∞5	23	16
27		15			∞6	34
45	13		26			∞7

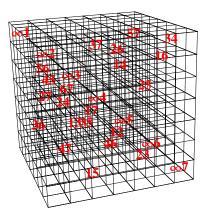
A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.



Top view:

∞1			36		27	45
56	∞ 2			47		13
24	67	∞3			15	
	35	17	∞4			26
37		46	12	∞5		
	14		57	23	∞6	
		25		16	34	∞7

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.



Side view:

26	34		57			∞1
45		16			<u>∞2</u>	37
	27			∞3	14	56
13			∞4	25	67	
		∞5	36	17		24
	∞ 6	47	12		35	
∞7	15	23		46		

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

Theorem.

A Room square of order v is equivalent to:

- two orthogonal 1-factorizations of the complete graph $K_{\nu+1}$
- two orthogonal-symmetric latin squares of order v

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

Theorem.

An *n*-dimensional Room cube of order v is equivalent to:

- *n* mutually orthogonal 1-factorizations of the complete graph K_{v+1}
- *n* mutually orthogonal-symmetric latin squares of order *v*

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

Theorem.

An *n*-dimensional Room cube of order v is equivalent to:

- *n* mutually orthogonal 1-factorizations of the complete graph K_{v+1}
- *n* mutually orthogonal-symmetric latin squares of order *v*

Let $\nu(v)$ be the largest possible dimension of a Room cube of order v

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

Theorem.

An *n*-dimensional Room cube of order v is equivalent to:

- *n* mutually orthogonal 1-factorizations of the complete graph K_{v+1}
- n mutually orthogonal-symmetric latin squares of order v

Let $\nu(v)$ be the largest possible dimension of a Room cube of order v

Proposition.

$$\nu(v) \leq v-2$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Room cube is an *n*-dimensional matrix of order v with entries that are empty or 2-subsets of $S = \{\infty, 1, 2, ..., v\}$ such that every 2-dimensional **projection** is a Room square.

Theorem.

An *n*-dimensional Room cube of order v is equivalent to:

- *n* mutually orthogonal 1-factorizations of the complete graph K_{v+1}
- *n* mutually orthogonal-symmetric latin squares of order *v*

Let $\nu(v)$ be the largest possible dimension of a Room cube of order v

Proposition.

$$\nu(v) \leq v-2$$

Conjecture (W. D. Wallis): $\nu(v) \leq \frac{1}{2}(v-1)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thanks for your attention!