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What is a higher-dimensional Hadamard matrix?

An n-dimensional matrix of order v with {−1, 1}-entries
H : {1, . . . , v}n → {−1, 1}

is Hadamard, if all (n − 1)-dim. parallel sections are orthogonal:∑
1≤i1,...,̂ij ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab

is proper Hadamard, if all 2-dim. sections are Hadamard matrices

Paul J. Shlichta, Three- and four-dimensional Hadamard matrices,
Bull. Amer. Phys. Soc. 16 (8) (1971), 825–826.

Paul J. Shlichta, Higher dimensional Hadamard matrices,
IEEE Trans. Inform. Theory 25 (1979), no. 5, 566–572.
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J. Seberry, Higher-dimensional orthogonal designs and Hadamard matrices,
Combinatorial mathematics VII (Proc. Seventh Australian Conf., Univ.
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An n-dimensional matrix of order v with {−1, 1}-entries

H : {1, . . . , v}n → {−1, 1}

is Hadamard, if all (n − 1)-dim. parallel sections are orthogonal:∑
1≤i1,...,̂ij ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab

is proper Hadamard, if all 2-dim. sections are Hadamard matrices

is Filmus-Gnang Hadamard (FGH), if[
Prod

(
H,Hτn−1

, . . . ,Hτ2
,Hτ

)]
i1,...,in

=

 v , if i1 = . . . = in,

0, otherwise.

E. K. Gnang, Y. Filmus, On the spectra of hypermatrix direct sum and
Kronecker products constructions, Linear Algebra Appl. 519 (2017),
238–277.
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V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 5 / 38

https://doi.org/10.1006/jabr.1994.1081
https://doi.org/10.1006/jabr.1994.1081


What is a higher-dimensional Hadamard matrix?
An n-dimensional matrix of order v with {−1, 1}-entries

H : {1, . . . , v}n → {−1, 1}

is Hadamard, if all (n − 1)-dim. parallel sections are orthogonal:∑
1≤i1,...,̂ij ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab

is proper Hadamard, if all 2-dim. sections are Hadamard matrices

is Filmus-Gnang Hadamard (FGH), if[
Prod

(
H,Hτn−1

, . . . ,Hτ2
,Hτ

)]
i1,...,in

=

 v , if i1 = . . . = in,

0, otherwise.

D. M. Mesner, P. Bhattacharya, A ternary algebra arising from association
schemes on triples, J. Algebra 164 (1994), no. 3, 595–613.
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A Hadamard matrix
n = 2, v = 4


− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −


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A Hadamard matrix
n = 2, v = 4
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A three-dimensional proper Hadamard matrix
n = 3, v = 4
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Higher-dimensional Hadamard conjecture

Do they exist for all orders v ≡ 0 (mod 4) and dimensions n ≥ 2?

Yi Xian Yang, Proofs of some conjectures about higher-dimensional
Hadamard matrices (Chinese), Kexue Tongbao 31 (1986), no. 2, 85–88.

Warwick de Launey, (O,G)-designs and applications, PhD thesis, The
University of Sidney, 1987.

Theorem (“Product construction”)
Let h : {1, . . . , v}2 → {−1, 1} be a 2-dimensional Hadamard matrix of
order v . Then

H(i1, . . . , in) =
∏

1≤j<k≤n
h(ij , ik)

is an n-dimensional proper Hadamard matrix of order v .

Proof. All 2-dimensional slices of H are equivalent to h.
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Other types of higher-dimensional designs
Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

W. de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

“Proper n-dimensional transposable designs”

K. J. Horadam, W. de Launey, Cocyclic development of designs,
J. Algebraic Combin. 2 (1993), no. 3, 267–290.

W. de Launey, D. Flannery, Algebraic design theory, American
Mathematical Society, Providence, 2011.
Chapter 11: Origins of cocyclic development

V. Krčadinac, M. O. Pavčević, K. Tabak, Cubes of symmetric designs,
Ars Math. Contemp. 25 (2025), no. 1, #P1.10.
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V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 11 / 38

https://ajc.maths.uq.edu.au/pdf/1/ocr-ajc-v1-p67.pdf
https://ajc.maths.uq.edu.au/pdf/1/ocr-ajc-v1-p67.pdf
https://doi.org/10.1023/A:1022403732401
https://doi.org/10.1023/A:1022403732401
https://doi.org/10.1090/surv/175
https://doi.org/10.1090/surv/175
https://doi.org/10.26493/1855-3974.3222.e53
https://doi.org/10.26493/1855-3974.3222.e53


Other types of higher-dimensional designs
Other types of combinatorial designs: symmetric block designs (SBIBDs),
orthogonal designs, (generalized) weighing matrices. . .

W. de Launey, On the construction of n-dimensional designs from
2-dimensional designs, Australas. J. Combin. 1 (1990), 67–81.

“Proper n-dimensional transposable designs”

K. J. Horadam, W. de Launey, Cocyclic development of designs,
J. Algebraic Combin. 2 (1993), no. 3, 267–290.

W. de Launey, D. Flannery, Algebraic design theory, American
Mathematical Society, Providence, 2011.
Chapter 11: Origins of cocyclic development
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The Fano plane
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The Fano plane



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0


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The Fano plane
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A three-dimensional Fano cube
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A three-dimensional Fano cube
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Cubes of symmetric designs

Theorem (“Difference cubes”)
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi1 + . . .+ gin ∈ D ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Proof. All 2-dimensional slices of A are incidence matrices of dev D.

Questions:

1 Are there cubes of symmetric designs not coming from this theorem?
(“non-difference cubes”)

2 Are there cubes of symmetric designs with inequivalent slices?
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V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 16 / 38



Cubes of symmetric designs

Theorem (“Difference cubes”)
If D is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi1 + . . .+ gin ∈ D ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Proof. All 2-dimensional slices of A are incidence matrices of dev D.

Questions:

1 Are there cubes of symmetric designs not coming from this theorem?
(“non-difference cubes”)

2 Are there cubes of symmetric designs with inequivalent slices?
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak: “Group cubes”)
If {D1, . . . ,Dv} are the blocks of a symmetric (v , k, λ) design, and each
Di is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi2 + . . .+ gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

Usually: Di = gi + D, i.e. the family is the development of a single D

D = {0, 1, 4, 14, 16} ⊆ Z21

Di = i + D, i = 0, . . . , 20

A 3-cube of (21, 5, 1) designs
(projective planes of order 4)
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(projective planes of order 4)
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If {D1, . . . ,Dv} are the blocks of a symmetric (v , k, λ) design, and each
Di is a (v , k, λ) difference set in G = {g1, . . . , gv}, then

A(i1, . . . , in) = [ gi2 + . . .+ gin ∈ Di1 ]

is an n-dimensional cube of symmetric (v , k, λ) designs.

G = 〈a, b | a3 = b7 = 1, ba = ab2〉

D1 = {1, a, b, b3, a2b2}

D2 = {a2b6, b6, a2b3, a2b4, a}

D3 = {1, a2, ab, b2, b6}
...

D21 = {a2b2, ab3, ab5, b6, ab6}
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Example: m = 2, (16, 6, 2)

There are three (16, 6, 2) designs:
|Aut(D1)| = 11520, |Aut(D2)| = 768, |Aut(D3)| = 384

Red design, Green design, Blue design

V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 19 / 38



Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
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Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

G = C4
2 : D1 = {D1, . . . ,D16}
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Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

G = C2 × C8: D2 = {D1, . . . ,D16}
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designs that are group cubes, but not difference cubes.
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For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

G = C2 × C8: D3 = {D1, . . . ,D8,D9, . . . ,D16}
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Question: Are there non-group cubes?

V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 27 / 38



Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

Question: Are there non-group cubes?

Proposition.
Up to equivalence, the set C3(16, 6, 2) contains exactly 27 difference
cubes and 946 non-difference group cubes. Furthermore, it contains
at least 1423 inequivalent non-group cubes.
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Cubes of symmetric designs

Theorem (V.K., M. O. Pavčević, K. Tabak)
For every m ≥ 2 and n ≥ 3, there are n-cubes of symmetric

(4m, 2m−1(2m − 1), 2m−1(2m−1 − 1))

designs that are group cubes, but not difference cubes.

The parameters are of Menon type: (4u2, 2u2 − u, u2 − u)

By exchanging 0→ −1, the cubes are transformed to n-dimensional
proper Hadamard matrices with inequivalent slices!
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Cubes of symmetric designs

Open questions:

1 There are exactly 78 symmetric (25, 9, 3) designs, but no difference
sets. Are there cubes of (25, 9, 3) designs of dimension n ≥ 3?

2 Are there non-group cubes of (15, 7, 3) designs? Are there any
non-group cubes for (v , k, λ) 6= (16, 6, 2)?

3 Is there a product construction for cubes of symmetric designs?

4 Hadamard matrices coming from Menon designs are of square orders.
Are there n-dimensional proper Hadamard matrices with inequivalent
slices of non-square orders?
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V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 30 / 38



Cubes of symmetric designs

Open questions:

1 There are exactly 78 symmetric (25, 9, 3) designs, but no difference
sets. Are there cubes of (25, 9, 3) designs of dimension n ≥ 3?

2 Are there non-group cubes of (15, 7, 3) designs? Are there any
non-group cubes for (v , k, λ) 6= (16, 6, 2)?

3 Is there a product construction for cubes of symmetric designs?

4 Hadamard matrices coming from Menon designs are of square orders.
Are there n-dimensional proper Hadamard matrices with inequivalent
slices of non-square orders?

V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 30 / 38



A forgotten success story: Room squares

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.

Let S be a set of v + 1 elements, say S = {∞, 1, 2, . . . , v}.
A Room square of order v is a v × v matrix M such that:

the entries of M are empty or 2-element subsets of S
each 2-subset of S appears once in M
elements of S appear once in every row and column of M
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A forgotten success story: Room squares

Example.

v = 7
∞1 26 57 34
45 ∞2 37 16
27 56 ∞3 14

13 67 ∞4 25
36 24 17 ∞5

47 35 12 ∞6
15 46 23 ∞7

Theorem.
Room squares of order v exists if and only if v is odd and v 6= 3, 5.

Proof: 1955–1973.
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Higher-dimensional Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.
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Higher-dimensional Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.
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Higher-dimensional Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.

Theorem.
A Room square of order v is equivalent to:

two orthogonal 1-factorizations of the complete graph Kv+1

two orthogonal-symmetric latin squares of order v
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Higher-dimensional Room cubes
A Room cube is an n-dimensional matrix of order v with entries that are
empty or 2-subsets of S = {∞, 1, 2, . . . , v} such that every 2-dimensional
projection is a Room square.

Theorem.
An n-dimensional Room cube of order v is equivalent to:

n mutually orthogonal 1-factorizations of the complete graph Kv+1

n mutually orthogonal-symmetric latin squares of order v

Let ν(v) be the largest possible dimension of a Room cube of order v

Proposition.
ν(v) ≤ v − 2

Conjecture (W. D. Wallis): ν(v) ≤ 1
2 (v − 1)
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The End

Thanks for your attention!

V. Krčadinac (University of Zagreb) On higher-dimensional designs May 26, 2025 38 / 38


